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Abstract—We consider the problem of sum-rate maximization
in multiple-input multiple-output (MIMO) amplify-and-fo rward
(AF) relay networks with multi-operator. The aim is to design
the MIMO relay amplification matrix (i.e., the relay beamformer)
to maximize the achievable communication sum-rate through
the relay. The design problem for the case of single-antenna
users can be cast as a non-convex optimization problem, witic
in general, belongs to a class of NP-hard problems. We devise
a method based on the minorization-maximization techniqueo
obtain quality solutions to the problem. Each iteration of the pro-
posed method consists of solving a strictly convex unconstined
quadratic program; this task can be done quite efficiently seh
that the suggested algorithm can handle the beamformer degn
for relays with up to ~ 70 antennas within a few minutes on an
ordinary personal computer (PC). Such a performance lays tk
ground for the proposed method to be employed in large-scale
MIMO scenarios.

Keywords: Amplify and forward, beamforming, large-
scale MIMO, minorization-maximization (majorization-
minimization), massive MIMO, relay networks, sum-rate

Fig. 1. A schematic of MIMO multi-operator two-way relay wetrks.
I. INTRODUCTION User pairs from different operators employ the relay (witteae number
e . L. of antennas) to achieve a better quality of communication.
Sum-rate maximization is a fundamental task arising in
signal design for communication, and particularly relay- ne
works, in W.h'ch relays are oftgn used to en_ha_nce the qual Biver hardware and software complexity, as well as smaller
of communication between pairs of users within the networ

| h networks. tw laving is sh i hi bett ansmission delay. Interestingly, such simple processin

N Such NETWOTKS, two-way refaying 1S shown to achieve betiz o relying is key to large-scale multiple-input multiplesput
spectral efficiency as compared to one-way relaying [1] MIMO) systems. In practice, relays can be equipped with
a fact that has attracted more research interest to two- ’

Yiltiple antennas for performance improvement which leads
relay networks and in studying them from both theoretic% al\F/)IIMO relaying schpeme P

and practical points of view. . . . :
. .. Fig. 1 illustr hematic of MIMO multi-operator two-
Note that the rate-optimal strategy for two-way relaying is g ustrates a schematic o O multi-operator two

. ! . , way relay networks (with a large number of antennas for the
not ygt known in general scenarios [1]_[3]’ parﬂcularlynfe elay). User pairs from different operators employ the Aleye
considers the case of several communication operators tb\% h'a large number of antennas) to achieve a better quality
provide communication services in the network (referreddo

. : . of communication. Note that the mathematical formulation
operator in the sequel). However, various protocols inclyd

. of the illustrated scenario is the same as multi-pair twg-wa
e or I (A 22 AF rlaying. Mull-plr oy relaying i & gneralin
prop y y 5t two-way relaying in which more than one pair of nodes

[4], 5] Contrgry o the D.F case, the AF relaying doe; noexchange information within the network, by employing the
perform any signal decoding at the relay, and hence enjoy

fhred relay. Since these pairs work in the same time slots
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The sum-rate of a MIMO AF relay system depends on In light of the above, the main contributions of this work
the amplification matrix, i.e. thdéoeamformerof the relay. can be summarized as follows:
Therefore, the aim of several works is to design the relay., The problem is considered in a rather general form

amplification matrix to maximize the sum-rate of the network  enabling the user to freely choose the number of operators
The sum-rate maximization problem for the above mentioned and the structure of the associated matrices (i.e., the
networks is a non-convex optimization problem (and belangt  channel parameters).

a class of NP-hard problems [1]) and several algorithms have, \We devise an iterative method based on the minorization-

been proposed in the literature to deal with the aforemeatio maximization technique to tackle the design problem.
problem. In [9], a branch-and-bound method was employed to - Applying the proposed method increases the value of the
tackle this design problem in the single-operator casetiegu objective function (i.e., the sum-rate) at each iteration.
in an overwhelmingcomputational burden. A related method,  Therefore, it can be shown that the obtained solution
i.e., the polyblock approximation algorithm [11], was apgl is a stationary point of the problem (under some mild
in a similar scenario considering monotonic optimizatibatt conditions, see [20] and references therein) satisfying
can only be used as a benchmark for small/medium MIMO the first-order optimality criterion for arbitrary number

relay networks due to a prohibitive computational comgiexi  of operators. It is worth mentioning that the general

in case of a large number of antennas (see also [12]). The case with arbitrary number of operators leads to a more
authors of [1] developed a polynomial-time iterative metho  (difficult optimization problem—particularly, the current
based on a semidefinite relaxation (referred to as PG BC methods based on semidefinite relaxation can be applied
tackle the problem. POTDC guarantees a rank-one solution only in the case of single operator (see the discussion
only for the special case of single operator and hence, its pefore Lemma 1).

solution is generally associated with a synthesis losshEBwr . The proposed method is computationally efficient and
more, each iteration of POTDC consists of solving a convex hence can be applied to large-scale MIMO systems as
determinat maximization (MAXDET) optimization that has a  well. Indeed, each iteration of the devised method con-
large computational burden. On the other hand, POTDC mesult  sists of solving a convex unconstrained quadratic pro-
outperform those obtained by the approximate (projection- gramme (QP); which can be efficiently done for instance
based) algorithm suggested in [6]. The references [1] and with an O(n?3) complexity (wheren is the problem
[13] include two heuristic algorithms based on one and two  dimension given by square of the number of antennas)
dimensional searches for the special case of single operato [21]. As a result, the method can handle problems with
The interested reader can refer to [11], [14], and [15] foreno n ~ 103 variables (or equivalenthl/p ~ 70) on an
approximate or heuristic approaches devised to tackleuttme s ordinary personal computer (PC) within a few minutes.

rate maximization problem. The rest of this paper is organized as follows. In Section
In the case of arbitrary number of operators, there is np e present the system model and problem formulation. We

efficient method that can lead to (some type of) optimality fropose an algorithm for designing the beamformer matrix in

the obtained solution. The heuristic methods are mainlgdassection |11, followed by several observations in Section IV

on observations for special cases and structured channglsetion V includes several numerical examples. Through an

Furthermore, most of the proposed methods in the literatigliciency investigation, we show that the proposed method

are merely suitable for small scale problems (see e.9.14])] can be applied to relays with large MIMO arrays. Finally,
The large-scale MIMO concept addresses employing a larggnclusions are drawn in Section VI.

number of antennas for transmit/receive leading to superio Notation: We use bold lowercase letters for vec-

performance improvements for the systems when compareddgs/sequences and bold uppercase letters for matrices. Se

ordinary MIMO systems [16]-[18]. In particular, for sumt€a Taple | for other notations used throughout this paper.
maximization, it has been shown that the zero-forcing (ZF)

and maximum-ratio combining (MRC) are nearly optimal for Il. PROBLEM FORMULATION
very large-scale (i.e., massive) MIMO systems; viz., when t
number of antennas diverges to infinity under certain con
tions® (see e.qg., [2], [19]). However, there exist systems wit
relatively large number of antennas for which the asymgpabti
results do not hold; indeed, how large the number of anten
should pe dgpends on the scenario. Npte_ that condltlon_s Fsume single-antenna user terminals and flat fading clsanne
near optimality of ZF/MRC are not satisfied in large-scale. i

I ) ve) MIMO : v, Theret between the:'" user of thel*" operator and the relay, which
ower-regime massive) scenarios generally. 1herslor, o qanoted byhy ;} [1]. The received signal at the relay can
for these MIMO systems the beamformer design for sum—r%g expressed as '[1] [6]

maximization sounds.

. We consider a MIMO AF two-way relay network consisting

f Mpr antennas,L (communication) operators and pairs
user terminals belonging to different operators (see the

discussion of Fig. 1 in Section | and [6] along with reference
Brein for details/practical applications of such systerive

2
1The branch-and-bound algorithm generally has an expaergimputa- r= Z Z hy z;; +ng D
tional cost [10]. =1 k=1
2pQOlynomial-Time algorithm forDifference of Convex programming. . . L
3For example, in [2] it has been shown that the rdkignter of antennas — wherexy ; is the transmitted symbol by thie" user of the

Thumber of users

should diverge to infinity for the asymptotic results to hold [t operator with powemy ; (given by E{|zx;|*}), andng




TABLE |

NOTATIONS be canceled using the channel knowle€d(gee e.g., [25] and

[6] for details). The devised method in this paper, howesen,

z(k): the k™ entry of the vectorx also be applied to the sum-rate maximization problem withou

1 . .

[1%||n: the I,,-norm of the vectorx, defined as(3", |=(k)|")» making such an assumption.

X;’ : the transpose conjugate of a mati The sum-rate maximization is constrained via the total

X+ the transpose of a matriX ; i

(X): the raco of & matri available powerPy at the relay, viz.

Amaz (X): the maximum eigenvalue of the hermitian mat¥x ~112 _ HH~H

An (X): the nt" eigenvalue of the matrix E{lrla} = tr{E{Grr7GT}} )

(1X]| £: the Frobenius norm of a matriX L 2

X-Y: X — Y is positive semidefinite = Z Zpk” Ghy |3 + 0%|G|7 < Pr

: the Kronecker product =1 b1 ]

veq X): the vector obtained by column-wise stackingXf T

L the identity matrix ofC™*™ which can be expressed with respect to (w.gtdsg’ Cg <

el(”): the " standard basis vector R"™ Pr wheré

R: the set of real numbers

C: the set of complex numbers ) L 2 H T

R(x): the real part ofr C=021,,2 + 1 ((hyh Q Inr ). 8

V£(x): the gradient of the differentiable functiof(x) REMg ; ;p al(hy, k’l) w) ®

V2 f(x): the Hessian of the two-times differentiable functig(x) T

f(n) = O(n®):  f(n) is upper bounded byn® for some0 < c < oo The aim is to design the AF amplification matfxin order to

E{z}: the expected value of the random variakle i _ i
x ~CN(0,%): the zero-mean random vectaris distributed according maximize the sum-raté,.,. Therefore, the design problem

to the circularly symmetric complex Gaussian distribufb-» SUM-rate maximization) in MIMO AF relay networks

with covarianceX. with L operators can be cast as the following problem:
L 2
1 g8
max = logy | 1+ :
denotes the circularly symmetric white Gaussian noise with & 2 ;; ( g (Yht + Ara)g + 0
covariance matrixo31 at the relay. By employing the AF ¢ ¢ gfCg < Pp. 9)

protocol, the transmit signal of the relay is given by
Note that the inequality constraint in the above problem is

r=Gr (@) active (i.e. satisfied with equality) at the optimal pointoid
with G € CMrxMn peing the relay amplification matrix, precisely, assume tha} is an optimal solution to (9) with

which is to be designed. We assume reciprocal chann8isC8 = Fo < Pr. Then a scaled version of which

between the relay and users [6]; consequently, the receiv@iiSfies the constraint with equality, ig: = \/Pr/Iv s,
signaly,; of the k" user at the'* operator becomes will lead to a larger objective value. This contradicts the

optimality assumption og. Considering this observation, the
Yk, = hfﬁJr N1 (3) optimization in (9) can be equivalently recast as the foifayv

whereny; is the associated (white) noise component (witPnrOblen?:

varianceoy ;). The sum-rate of the system can be formulated - ﬁ 13[ g ALg (10)
as [6] L g 1io; 87"Brig
1 =1 k=
Rsym = 5 Z Z 1Og2(1 + nk,l)- (4) s. t. gHCg = Pp
=1 k=1

. . . . where we have used the following definitions:
Hereinn; ; denotes the signal-to-interference-plus-noise ratio

(SINR) for the k' user of thel!” operator and it has oi
: - : : Bri, = Yii+Ag+5-C, (11)
the following expression (see Appendix A for the detailed ' ' ' Pr
derivation of this expression) Ai; = By + &,
- g P8 (5) The objective function of the problem (10) consists of the
T gl (Y + Arg)g +of product of several fractional quadratic functions. Thiskpem
where g = vedG) and the matricesby ;, Y51, A1 @r€  4The channel state information (CSI) of all links is requiredithe relay
defined as which can be estimated if each user sends a training bloangfth Ny > 2L
u to the relay [23]. Furthermore, the considered time-divisduplex (TDD)
T T T T i i
‘I’k,l = Dk, (h3—k,l ® th) (h3—k,l ® th) (6) relaying leads to remprog:al channels bet\(veen the users_thmdelay [2_4].
I Consequently, the downlink channel matrix can be obtaingdrdnsposing
_ (T T T T the uplink one and taking calibration into account. At thergsside, the
Yho = Z Zpk,l (hE,T@) th) (hE,T® th) k" user oflt" operator should only know two scalar parametefs,Ghy, ;
ko 1#L and hflth,,k,l for self-interference cancellation as well as data dedacti
9 o L : ; B .
Ak,l =02 (IMR ® (hk,lhkyz) ) ) respectively (that may be estimated by forwarding the imgirsignal received

by the relay).
Note that in the definition of the SINR in (5) and (6), thF'.‘A\ 5The derivations of (7) and (8) are similar to those develoipedppendix
effect of _the “self-interference” has_been ignor_ed—dueh’@ t ooy (10) we letk run from1 to 2 as in (9); however, from a mathematical
assumption that terms corresponding to self-interferer@®e point of view, the suggested approach can handle an aspitmggrval for k.



) (2)

Fig. 2. An illustration of the MaMi technique.

: .8
is non-convex and belongs to a class of NP-hard problems in

general [1].

IIl. SUM-RATE MAXIMIZATION
A. The Proposed Algorithm

Therefore, the term- log(g By, g) can be minorized using
the above inequality at any givegy. More precisely, setting
ro = gfBr,go andz = g’By g leads to the following
minorizer for — log(g? By 1g):

—log(g"" By, g) >

—log(gt Br,1go) —

(17)

m(gHBng — g Br.igo)-
Additionally, substituting the term-log(gf’ By ,g) in (15)
with the above minorizer (and neglecting the constantsjdea
to the following maximization problem at théx + 1)
iteration:

L 2

max 33

=1 k=1

1 H
@) B, g™ 8 DhiE|:
(g®)) k18

(18)

Inspired by the rich literature on semidefinite relaxatiosm,

note that by consideriny. = gg as the optimization variable
in (18) and dropping the rank-1 constraint, a convex altiérea
of (18) can be obtained at each iteration (see e.g., [2713e@n

{log(gH Apig) —

Note that the objective function in (10) is invariant withsolutionX is obtained, the optimized vectgrshould be then
respect to scaling; therefore, we can deal with the uncofinthesized fronX. However, there is no guarantee for a rank-
strained problem and then scale the solutiprsuch that it 1 solutiol X, and hence, this approach is associated with a
satisfies the constraig? Cg = Pg. In this paper, we use synthesis loss [28]. In addition, applying the relaxatieads
the minorization-maximization (or majorization-miniraizon) to iteratively solving a MAXDET problem possessing a high
technique to tackle the non-convex design problem in (1®@mputational burden (a similar algorithm has been sugdest

Minorization-maximization (MaMi) is an iterative technig N [1]). Instead, in the sequel, we devise a computationally
that can be used for obtaining a solution to the gene@ﬂ(ﬂent method that increases the Ob]eC“Ve value at each

maximization problem [20] [26]: iteration gnd guarantees the first—ordgr optimality caodifor
the solutiong (under some mild conditions, see [20], [27] for

max  f(z) (12)  details). To this end, we proceed by finding a minorizer fer th
s t. c(z) < 0. termlog(tr{A;,;X}) as a function ofg using the following
Lemma.
Each iteration (say the'” iteration) of MaMi consists of two
Lemma 1. Lets(x) = — log(x Tx) andx” Cx = P for any

steps (see Fig. 2):
« Minorization Step: Findings(*)(z) such that its maxi-
mization is simpler than that of (z) and p(*)(z) mi-
norizesf(z), i.e.,

positive-definite matrice¥’, C in CV*V as well asP € Rt.
Then, the following inequality holds x, x,:

s(x) < s(xg)+R (bH(x — X)) +(x—x0)HU(x—x%0) (19)

@) < f(z), vz (13) Wwhere
%) (Z(nfl)) f(z(”*l)) b — (H_i?) Txq (20)
X0 TX()
with z(*~1) being the value of at the(x— 1) iteration. U - 4P )1
« Maximization Step: Solving the optimization problem, B wilCw,
max f,(n)(z) (14) and_ wherew; is the principal eigenvector df' ande > 0 is
z arbitrary.
s. t. c(z) <0 )
Proof: See Appendix B ]
to obtainz("). = N
Assume thatg“Cg = Pgr at each iteration (see the

Now, consider the following equivalent form of the problenh

in (10) emark 1 below). Now observe that using the above lemma,

the following minorizer is obtained for the teriog(g? A 1g)
L 2 . . at any giveng:
>°> 108 (8" Arig) ~ log (8" Brs) |15)

=1 k=1

max

g >

log(gd  Ay,g0) — R ((bk,z)H (g — go))
(21)

log(g” Ak,8)

Note that the following inequality holds due to the concavit
of log(x) for all x,z9p € RT:

—(g — 80)" Uk, (g — g0)

“Note that by employing the aforementioned semidefinitexegian, a rank-
1 solution X can be obtained just for the single operator case Witk 1
(see [1] for details).

log(x) <log(zo) + m—lo(x — ). (16)



TABLE I
Wherebk,l andUk,l are related I(AM and can be calculated THE PROPOSED METHOD FOR SUMRATE MAXIMIZATION VIA RELAY

by employing (20) in the Lemma (see (23) below). Based on BEAMFORMER DESIGN
(18) and (21), we consider the minimization of the following

criterion w.r.t. g at the (k + 1)”1 iteration of the proposed Step Q Initialize g with a random vector itM#% (and scale it such that
method: gHCg = Pg); setxk = 0.
Step 1 ComputeQ(%) andq(®) using (25).
L 2 [ < B, ) Step 2 Solve the convex problem in (24) using either the closedsfr
I || —F——+ U g
=1 k=1 (g("))

i (22) expression (27) or direct methods (for solving the assediatystem of

Jr
B g linear equations) to obtaig(<+1).

Step 3 Scale the obtained solutiog(**1) such that

H
+R (bk,z - 2Uk.lg(ﬁ)) g (g )TCgrt!) = Pp; setr « r 4 L. o
’ Step 5 Repeat steps 1-3 until a pre-defined stop criterion is fgadis

. e.g.|fstD) — f(®)| < ¢ (where f denotes the objective function of the
with problem (10)) for some > 0.

=)
) Apig™,  (23)

Pt = (ﬁ
(g))" Ay,gs )
sum-rate. The suggested method improves the value of the
4PR Lot objective function at each iteration (see Section IV-B).t&No
wil,Cwy, ’ that the computational complexity of the method is lineahwi
the number of iterationd/. Furthermore, each iteration of the
r(]'allgorithm consists of solving a strictly convex problem )24
L%ing either the closed-form solution in (27) or directétéve
methods for solving systems of linear equations [29], [30].
min gHQ(H)g LR ((q(,@))H g) (24) T_he steps for_ comp_uting the solution_ can bg implgmentef:l e.g.
g via the algorithms in [21] (for matrix multiplications) vt
where O(n?3) complexity wherex = M2 is the problem dimension.
The devised method can handle problems of dimension on

Uy,

and w;; denoting the principal eigenvector ok ;. The
above optimization problem can be recast as the followi
unconstrained QP:

L 2
Q) = ZZ [# +Uy,|, (25) the order of10% variables on an ordinary PC within a few
=1 =1 L(g™) " By g ’ minutes. The computational efficiency of this method makes
L 2 it potentially useful in large-scale MIMO systems (see [31]
q = {bk,l _ QUMg(H)} ) (26) for descriptions of a recently developed prototype of such

k= systems). We herein also remark on the fact that the MaMi
Note thatB,; = 0, and alsoU,, = 0 because it is a algorithms were originally developed to achieve a very low
scaled version of identity matrif with a positive scalar, COMputational burden by avoiding complicated matrix iAver
Therefore, the matriQ(*) is positive-definite at each iteration,SIons that are an indispensable part of off-the-shelf apém
Consequently, the problem in (24) is strictly convex wg.t. 0N packages; see, e.g. [32]. Also, comparisons with wario

The unique solution to this optimization is obtained by gggv Methods show that MaMi algorithms are usually difficult to
the system of linear equatior® g + q*) = 0, viz. beat in terms of stability and computational simplicity [26

—
—

o= _% (Q<~+1>)’1 q". 27)

It is worth noting that the solutiog to the above system |, ;o chice. the users of specific operators may have a higher
of linear equations can also be obtained via directly Sglv”briority compared to others. In such cases, a maximizatfon o

the_linear sygtem using more efficient techniques, and thys, weighted sum-rate becomes of interest. The weighted sum
avoiding the inverse (see e.g., [29], [30], and the refeﬂsencrate is given by

therein).

Remark 1:Note that the above solutigndoes not necessar- 2
ily satisfy the constraing’ Cg = Py of the original problem Z Z w1 1ogy (1 + 1k,1) (28)
(10) at each iteration. As mentioned before, we can scale the =1 k=1

obtained solution at the convergence to deal with this issygp, 4, , being the (non-negative) weights associated with
as the objective function in (10) is scale invariant. Howevehe 1t yser of thelt” operator. Similar to the sum-rate
the derivation of the matriUy; in Lemma 1 requires the maximization case, the corresponding optimization proble
satisfaction of the constraint at each iteration; see AgpeB a5 pe cast as

for details. Therefore, we need to scale the obtaigedt

each iteration such that”Cg = Pp. Note also that the ﬁﬁ <gHAkylg)wk'L

B. Weighted Sum-Rate Maximization

|~

H
iiei \8 Brig
s. t. gflCg = Pp.

(29)

scaling does not affect the convergence of the sequence of th mgax

objective function values associated with the problem.(lD)

Table Il summarizes the steps of the proposed methdtie above problem can be dealt with via the proposed method
for relay beamformer design to maximize the communication this paper after some minor modifications. To see this,



consider the following equivalent form for the problem i®)2 B. Convergence

L 2 In order to study the convergence of the devised approach,
max Z Z W 1 [1og (8" Ak.g) —log (8" Br.g) } observe that

g
=1 k=1
=1 = ) (g=1) 36
and note that solutions to the above problem, which is a f (g ) P (g ) (36)
) (gw)) < f(gm)

modified version of (15), can be obtained via the algorithm
where p(®)(.) is the minorizer associated with the objective

IN

in Table Il, using

L 2
() By, f(.) at thex!" iteration. The first inequality in (36) holds due
Q B ; ,;wk’l [(g(l{))H By g + Uk (30) to the maximization step at thé” iteration, whereas the sec-
I 9 ond inequality comes from the definition of the minorizere(se
q Z Wi {bk,l _ QUng(n)} 7 (31) (13)). This monotonically increasing property togethethwi
=1 b the derived upper bound in (35) guarantees the convergence

of the sequence of the objective valugs(g™))}, and hence

of the sum-rate metric. Note that the obtained solutionsh&a

proposed method are stationary points of the problem (under

IV. SUM-RATE UPPER BOUND AND SOME some mild conditions [20]) satisfying the first-order opility
COMPUTATIONAL ASPECTS criterion for the non-convex problem (10).

A. Sum-Rate Upper Bound

In the following, we derive an upper bound on the objective. Practical Real-Time Applications
function of (10), and the associated sum-rate metric. Nww&é t The communication channefd,;} are subject to change
the boundedness of (10) is a key fact for the convergence\gith time in real-world applications in particular due toeth
the proposed method—see Section IV-B below for details. Wegjative motions of users/relay/scatterers. The timervals
observe that each term of the product on the right-hand sigg which the channels can be assumed to be invariant depend

in lieu of (25)-(26).

of L2y on the Doppler spreads of the channels (see e.g., [33], [34]
92Rsum _ H g Arig (32) for details). Note that for any new set of channel parameters
plegwie gliBy g {hy,;}, a new beamforming matribG is to be designed.

o Therefore, the convergence speed (computational contpjexi
can be bounded from above _by considering the related gengfzqciated with the design method plays an important role in
alized eigenvalue problem, viz. the applicability of the method. In addition to general tesu

g AL g o {B‘lA } 33) on the _computational efficiency of the prqposed method_, an
rqu_lg > Amaz |\ Pr Akl - mterestmg aspect.of the proposed method is that the gualit
’ the obtained solution and the convergence speed depené on th
Moreover, as the sum-rate is invariant with respect to Permemployed starting point (see Section V and [20] for details)
tations of the matrice$A,; } and{By,} within the products, Therefore, in real-time applications where the commuidcat
the upper bound may be strengthened by considering such R#fannels{h,;} change with time, the proposed method can
mutations. More precisely, let(k, [) : {1,2} x{1,---, L} = quickly converge if initialized with the preceding solutig.

{1,2} x {1,---, L} denote a generic permutation functiorNote also that in practical real-time applications, the hoeit
over all possible(k, ). Then, according to the generalizedan be implemented more efficiently (e.g., via implemeatati
eigenvalue upper bound, in C language, parallelization, and so on) and be run on
gTA g powerful digital signal processors (DSP/FPGA) to speed up
% < Amaz {B,;}AWW)} (34) the convergence significantly (see the discussion of Tdble |
& Prig as well).
which implies
) L 2 V. NUMERICAL EXAMPLES AND DISCUSSIONS
. -1
Rsum < 5 log, <7P(ﬂkllll) {H [T Mae {Bk,lAﬂ(kJ)}}) : In this section, the performance of the proposed method is
’ 1=1k=1

(35) evaluated via Monte-Carlo simulations. An AF based bidirec

Next note that the equality in (34) is attained wheris a tional MIMO relay network withZ operators and/ antennas
principal eigenvector of the matriB; ' A (). AS @ conse- at the relay is considered. The variances of the Gaussian
kTR L)

quence, the upper bound in (35) is attained when matricaQises 2for the2 relay and users are assfumed to be equal, i.e.,
A, B, and {Uy,} (with B, and {Uy,} being invertible) 7k = %is = Tn- For the sake of comparison, we use the same

exist such thath ;) = AUy, and By, = BUy,, for all power allocation as considered in other related works (see e
(k1) € {1,2} x {1”,,, (LY. This shows that the bound inll: [6] and_ the references therein); namely, we assume t.hat
(35) is tight and it can not be improved upon unless the cla€ transmit powers of the relay and users are identical, i.e
of matrices{A,.;, By} is restrained. Pr = pr,; = p. The signal-to-noise ratio (SNR) is defined as

’ ’ p/o2. Moreover, the normalized distance betwééh user of



the [ operator and the relay is representeddpy. For sim-
plicity and without loss of generality, we assume thiat = d;
anddy; = ds (with d1 +dy = 1). Therefore, the near-far (N/F
ratio is defined asl; /d2. The Rayleigh flat fading chann
vectors{hy,;} are reciprocal and spatially uncorrelated. 1
path loss exponent is assumed todi all simulations, thuss
the fading variances are proportional ]t;zﬁdzl [33], [34]. As
aresult,{hy;} are modeled as independent Gaussian ran
vectors withhy; ~ CN (0, (do/dy;)° ) wheredy = 0.1 £ 1
is the considered reference point. All the results are ;mteskm
consideringl 00 realizations of the associated fading chann
As to the convergence of the proposed method, we con
¢ = 1072 in Table Il. The QP of the step 1 of the propos
method (see Table Il) is solved using the embedded MATL
function for directly solving systems of linear equatitins
We begin by investigating the effect of the SNR on the

sum-rate in a symmetric scenario (i.€;, = ds). The sum- Fig. 3. The values of sum-rate associated with the propositiod and the
rate values associated with the proposed method as well™gg0d of (11 (e, POTDC), ZF, as well as MRC versus SNR fos- 2.
the POTDC method of [1] versus SNR are shown in Fic
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for Mr = 4 and Mr = 8 with L = 2. As expected, th
sum-rate is increasing with respect to SNR. Furthermoee
results of the proposed method are slightly better tharetio:
the method in [1] because the proposed method circumy

- A=-ZF Mp=14

- B = POTDC,Mp =4

= © = ProposedMp = 4
A ZF, Mp =38

~@ POTDC,Mp =8

'O ProposedMp =8
—d— ZF, Mp = 20
=—©— ProposedMpr = 20

the synthesis loss associated with POTDC. This figure
includes the results for ZF and MRC method with; = 4, 8
and Mp 20 (that can be considered as a large-st
MIMO scenario). It can be observed that the proposed me ¢
outperforms well ZF and MRC methods. This observatiowu%

=
3

(bit/sec/Hz)

10l

compatible with the fact that ZF and MRC are merely nei .
optimal when the number of antennas diverges to infit ’,g:::"
Next, we study the effect of the N/F ratio. Fig. 4 plots the st g: e

rate values versus different N/F ratiob & 2, SNR=20dB).

The proposed method achieves better results in the w
interval of the N/F ratio when compared to other methc
Note that the N/F ratio is defined ds/d, and the maximum
rate is achieved in the symmetric scenario where the relayFig. 4. The sum-rate values for various methods versus Nif- fier L = 2
in the middle of users (see [4] for more details and [1], [6]"¢ SNR=20dB.

for similar behaviors). Note that in the above figures, we do

not include the results of POTDC method fz = 20 due  of A7, due to the prohibitive computational burden of these
to prohibitive computational burden. methods. We further note that the proposed method tracks the
It can be observed from Fig. 3 and Fig. 4 that the Iarggrpper bound for varioud/r well.
the number of antennad/p, the larger the sum-rate. This Fig. 5 (a) and (b) plot the sum-rate values for the ZF as
aspect is further explored in Fig. 5 (a) and (b) where thge|l° |t can be observed from Fig. 5(b) that for a wide range
values of sum-rate are plotted versié; for L = 1 and of the considered/p, the proposed method outperforms well
L = 2, respectively. Fig. 5 (a) also includes two ad-hoge ZF, as expected (see the explanations related to lower-
algorithms, namely 1-D RAGES and 2-D RAGES [1] alongegime massive in Section ). Then, by further increasirgy th
with the upper bound [15] on the sum-rate values ot 1. pumber of antennas, ZF tends to the obtained values by the
The monotonically increasing behavior of the sum-rate withyoposed method (massive regime). Note that the borderline
respect toMp, is evident from these figures. This behaviopetween the lower-regime massive and massive is not sharp
can be justified by considering the fact that larger values ghd also depends on other parameters like the number of
Mp, (i.e., more antennas at the relay) provide more degfeesdﬁferatorsL; e.g., in Fig. 5(a), at smaller values afr we

freedom for the design problem. For the caselof 1, the have similar sum-rate values for the proposed method and ZF
differences between the sum-rate values of various methggl§s point will be analyzed shortly—see Fig. 6 below).

are minor. Note that the curves associated with POTDC, 1-|t can also be observed from Fig. 5 (a) and (b) that the sum-
D RAGES, and 2-D RAGES are truncated for larger valuggte for L = 1, My = 2 is larger than that of the case with

0.5 0.6

N/F ratio

8The reader may refer to the MATLAB commandb” for obtaining the
solution to the linear systemAx = b.

Swe do not include the results of MRC because for= 1 is very similar
to ZF and forL = 2 is not competitive.
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Fig. 5. The sum-rate values for various methods versus th@auof antennad/g: (a) the case of. = 1, (b) the case of. = 2. The SNR is set t@0dB.

L =2, Mp = 2. This can be explained considering the f

that in the case of, = 2, the interference power for the use
. . 5ol —8—ZF

of the first (second) operator grows due to the existenc

the interferences corresponding to users of the second) | 4t

operator; whereas, when the system has one operato

interference power only comes from the relay/receivergsew

This leads to a lower sum-rate value for the system with § *|

operator (andV/z = 2). Note that by increasing the numb%aof
of antennas\/g, a judicious design of the relay beamforn"g i
matrix G decreases the interference power and as a re?@
larger sum-rate values will be obtained (see Fig. 5 (a)

(b)). However, for small\/, there are not sufficient degrees  1s-
freedom (in the design problem) to circumvent the interfess

power associated with the second operator. Therefore,

40

20

L L L L L
can conclude that a large number of antennas for the | °1 2 3 4 5 6 7
. The number of antennas
becomes quite useful when several operators are supposeu w
work simultaneously. Fig. 6. The values of sum-rate associated with the propossttiad and ZF

versus the number of operataks The values ofM r and SNR are set t20

The effect of the number of operatofsis considered in and 20dB, respectively.

Fig. 6. The figure shows the sum-rate values versufor
Mpg = 20 and SNR=20dB. The figure includes the results of

the proposed method and ZF (we do not include MRC hergjg aiions). The 1-D RAGES and 2-D RAGES algorithms can
as it is n_ot compeutlve). Also, the POTDC has prohibitivgg employed for up td/z = 40 [1]. It is observed that the
computational time for. > 2 and RAGES methods can notyrgn0sed method has much lower computational cost when
be applied forL > 1. It is observed that largek leads t©©0 ¢ompared to the existing methods. To be more precise, the
more significant gap between the proposed method and £Fmnytational time of our method is on the order of (at
This behavior can be explained considering the fact that tﬁﬁ)st) a few seconds at/p ~ 40,50. We remark on the
asymptotical near optimality of ZF depends on the number i that the ZF and MRC methods have lower computational
operatorsL in addition to the number of antennagx (se€ pyrden when compared to the proposed method; however, the
Section | and [2]). resulting sum-rate values by these methods are consigerabl
The computational times of the various methods for tacklingwer than that of the proposed method in conventional and
the sum-rate optimization problem (10) are analyzed in Figrge-scale (lower-regime massive) MIMO systems (see e.g.
7 (a) and (b), respectively. The figures illustrate the ayeraFigs. 3, 4, 5, and 6 and the discussion in Section 1). Theeefor
computational time considerin) runs of the methods with meaningful improvements in the sum-rate values (i.e.,llpca
random initializations on an ordinary PC (with 8GB RAM andptimal values) can be achieved by the proposed method
CPU CoRe i5). It can be seen that the POTDC method hiasconventional/large-scale MIMO systems with the cost of
the highest computational burden as compared to the othégher computational burden as compared to the ZF/MRC (see
methods (note that the values for POTDC correspond(to Section IV-C for a discussion of the computational time and
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Fig. 7. The average run-time (seconds) for various methedsug the number of antenna$r associated with Fig. 5: (a) the case bf= 1, and (b) the
case ofL = 2. Note that the problem dimension is given hy= M12;»,-

practical applications). confirmed the effectiveness of the proposed method when
We next investigate the initialization and convergenagmpared to other methods in terms of the solution quality

speed/time of the proposed method. To analyze the randand the computational efficiency. In particular, the method

initialization, we report the histogram of the convergeticees could handle design problems of dimensions of up to several

on a standard PC (see above) for various random initiatiotisousands variables (equivalently, a number of antennag of

We consider200 independent random Gaussian vectors ito Mz ~ 70) on an ordinary PC within a few minutes, which

CM% with i.i.d. elements. Fig. 8 (a) and (b) plot the aforemakes it potentially useful in large-scale MIMO scenarios.

mentioned histograms for the caselof= 1 as well asL = 2,

respectively (assuming/r = 20 and SNR=20dB). It can be

observed that the histograms are concentrated well ardwnd t

corresponding averaged values in Fig. 7. The convergence

time of the proposed method when it is initialized by the

sub-optimal solutions are drawn in Fig. 9 versus;. In this

figure, the ZF and MRC points are employed to initialize the

proposed method for SNR8dAB. As expected, such starting

points speed up the convergence of the algorithm as compared

to the random initiation.

VI. CONCLUSION

The problem of sum-rate maximization in MIMO AF relay
networks with multi-operator was considered. The aim was
to optimally design the relay beamforming matrix in order to
maximize the communication sum-rate. The design problem
was cast as the maximization of a product of many fractional
QPs subject to the relay power constraint, which belongs to
a class of NP-hard problems in general. We devised an itera-
tive method based on the minorization-maximization (MaMi)
technique to deal with the problem. The minorizers for the
objective function terms were derived by using linear and
guadratic minorizers for matrix/vector functions. The poeed
method provides quality solutions to the design problem,(i.
stationary points of the problem, under some mild cond&jon
for an arbitrary number of operatofs Each iteration of the
proposed method was dealt with via solving an unconstrained
(strictly) convex QP either using a closed-form solution or
by solving a system of linear equations. Numerical examples
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Note that the SINRy; for the k' user of thel'" operator
can be computed via the following expression:

Nkl
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THE DERIVATION OF THE SINR EXPRESSION IN(5)

E{|hiGhs_23-11["}

- B{| X4 i, Ghy oy 17} + B{h{ ,Gng[?} + 0f

in which the numerator can be expanded as

(37)

E{|h£lGh37k,lx37k,l|2}

= E{|zs_[*}(h ;Ghs_t ;) (b} ,Ghs_ )"
= pratr{(h{ ,Ghs_p )" }tr{h} ,Ghs_s,}
= pravedG)" ((h3T—k,z ® hz,l)H(hg—k,z ® hg,l)) veq ()

In the above we have used the fact that the sdafgiGhs_j
can be alternatively written athj_, ; ® h{ﬂvec((?) consid-
ering the Kronecker product property{ ABC} = (CT
A)vedB) [35]. Now by definingg = ved G) and

Dy = pk,l(h:sTfk,z ® hf,z)H(hngk,z ® hf,z)

the numerator ofy,,; in (37) can be rewritten ag”®, ;g.
Using similar calculations, the terms in the denominator of
the SINR#~;; in (37) can be straightforwardly expressed as
they are stated in (5) and (6). Note that (7) and (8) can also
be verified via similar techniques.

APPENDIXB
PROOF OFLEMMA 1

We begin the proof by separating the real and imaginary
parts of the variablex € CV as[z” y?]T € R?V. Next, we
consider the Taylor expansion of the functieri[z” y*]”)
which leads to a standard quadratic majorizer [26]. It can
be verified that by employing straightforward techniqués, t
aforementioned majorizer can be expressed wrds

s(x) < s(xo)+ R (VS(X>H|XZXU (x — XO)) (38)

+(X — X())HU(X — X())

for all x,xq. Note that the existence dJ = 0 such that
V2?s(x) < U for all x guarantees holding of the above
inequality [26]. In the sequel, we derive the matrix boudd
on V2s(x). Let h(x) = xTx andx = [z7 yT]7; using the
results of [35], [36] it is verified that

Vs(x) = %Vh(x) _ % (39)
o Vh(x)Vh(x)!
Vi) = gog VRO gy
B -2T 4TxxH?T
- xHTx  (xHTx)?’
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Note thatT > 0, and therefore, the first term in the expressioRinally, using (38), (39), (44), and the discussions aboee w
of V2s(x) is negative-definite. As a result, it suffices to obtainbtain

~ > 0 such that —2Txq
ATxx"'T b 2 Vs(@)lx=xo = rp (45)
=1L (40) Xp 1Xo
(xH'Tx)? N 4P
ve (2P, ) I
Herein, we remark on the fact that several algebraic bounds (W1HCW1

can be obtained satisfying (40); however, the tightness @here w; is the principal eigenvector of the matrik; and
the bound affects the convergence speed and quality of §ignce the proof is complete.
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