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Abstract—We consider the problem of sum-rate maximization
in multiple-input multiple-output (MIMO) amplify-and-fo rward
(AF) relay networks with multi-operator. The aim is to design
the MIMO relay amplification matrix (i.e., the relay beamformer)
to maximize the achievable communication sum-rate through
the relay. The design problem for the case of single-antenna
users can be cast as a non-convex optimization problem, which
in general, belongs to a class of NP-hard problems. We devise
a method based on the minorization-maximization techniqueto
obtain quality solutions to the problem. Each iteration of the pro-
posed method consists of solving a strictly convex unconstrained
quadratic program; this task can be done quite efficiently such
that the suggested algorithm can handle the beamformer design
for relays with up to ∼ 70 antennas within a few minutes on an
ordinary personal computer (PC). Such a performance lays the
ground for the proposed method to be employed in large-scale
MIMO scenarios.

Keywords: Amplify and forward, beamforming, large-
scale MIMO, minorization-maximization (majorization-
minimization), massive MIMO, relay networks, sum-rate

I. I NTRODUCTION

Sum-rate maximization is a fundamental task arising in
signal design for communication, and particularly relay net-
works, in which relays are often used to enhance the quality
of communication between pairs of users within the network.
In such networks, two-way relaying is shown to achieve better
spectral efficiency as compared to one-way relaying [1]—
a fact that has attracted more research interest to two-way
relay networks and in studying them from both theoretical
and practical points of view.

Note that the rate-optimal strategy for two-way relaying is
not yet known in general scenarios [1]–[3], particularly ifone
considers the case of several communication operators that
provide communication services in the network (referred toas
operator in the sequel). However, various protocols including
decode-and-forward (DF), and amplify-and-forward (AF) have
been proposed in the literature for two-way relay networks
[4], [5]. Contrary to the DF case, the AF relaying does not
perform any signal decoding at the relay, and hence enjoys a
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Fig. 1. A schematic of MIMO multi-operator two-way relay networks.
User pairs from different operators employ the relay (with alarge number
of antennas) to achieve a better quality of communication.

lower hardware and software complexity, as well as smaller
transmission delay. Interestingly, such simple processing of
AF relying is key to large-scale multiple-input multiple-output
(MIMO) systems. In practice, relays can be equipped with
multiple antennas for performance improvement which leads
to a MIMO relaying scheme.

Fig. 1 illustrates a schematic of MIMO multi-operator two-
way relay networks (with a large number of antennas for the
relay). User pairs from different operators employ the AF relay
(with a large number of antennas) to achieve a better quality
of communication. Note that the mathematical formulation
of the illustrated scenario is the same as multi-pair two-way
AF relaying. Multi-pair two-way relaying is a generalization
of two-way relaying in which more than one pair of nodes
exchange information within the network, by employing the
shared relay. Since these pairs work in the same time slots
and frequency bands, multi-pair two-way relaying improves
the spectral efficiency, but it requires further processingto
cancel inter-pair interference. Note that these systems have
several potential practical applications, e.g. when multiple
communication partners (belonging to different operators) use
one relay (possibly owned by a third party/virtual operator)
and in the same time/spectrum (see also [6] and references
therein for more details/examples).
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The sum-rate of a MIMO AF relay system depends on
the amplification matrix, i.e. thebeamformerof the relay.
Therefore, the aim of several works is to design the relay
amplification matrix to maximize the sum-rate of the network.
The sum-rate maximization problem for the above mentioned
networks is a non-convex optimization problem (and belong to
a class of NP-hard problems [1]) and several algorithms have
been proposed in the literature to deal with the aforementioned
problem. In [9], a branch-and-bound method was employed to
tackle this design problem in the single-operator case resulting
in an overwhelming1 computational burden. A related method,
i.e., the polyblock approximation algorithm [11], was applied
in a similar scenario considering monotonic optimization that
can only be used as a benchmark for small/medium MIMO
relay networks due to a prohibitive computational complexity
in case of a large number of antennas (see also [12]). The
authors of [1] developed a polynomial-time iterative method
based on a semidefinite relaxation (referred to as POTDC2) to
tackle the problem. POTDC guarantees a rank-one solution
only for the special case of single operator and hence, its
solution is generally associated with a synthesis loss. Further-
more, each iteration of POTDC consists of solving a convex
determinat maximization (MAXDET) optimization that has a
large computational burden. On the other hand, POTDC results
outperform those obtained by the approximate (projection-
based) algorithm suggested in [6]. The references [1] and
[13] include two heuristic algorithms based on one and two
dimensional searches for the special case of single operator.
The interested reader can refer to [11], [14], and [15] for more
approximate or heuristic approaches devised to tackle the sum-
rate maximization problem.

In the case of arbitrary number of operators, there is no
efficient method that can lead to (some type of) optimality of
the obtained solution. The heuristic methods are mainly based
on observations for special cases and structured channels.
Furthermore, most of the proposed methods in the literature
are merely suitable for small scale problems (see e.g. [1], [14]).

The large-scale MIMO concept addresses employing a large
number of antennas for transmit/receive leading to superior
performance improvements for the systems when compared to
ordinary MIMO systems [16]–[18]. In particular, for sum-rate
maximization, it has been shown that the zero-forcing (ZF)
and maximum-ratio combining (MRC) are nearly optimal for
very large-scale (i.e., massive) MIMO systems; viz., when the
number of antennas diverges to infinity under certain condi-
tions3 (see e.g., [2], [19]). However, there exist systems with
relatively large number of antennas for which the asymptotical
results do not hold; indeed, how large the number of antennas
should be depends on the scenario. Note that conditions for
near optimality of ZF/MRC are not satisfied in large-scale (i.e.,
lower-regime massive) MIMO scenarios generally. Therefore,
for these MIMO systems the beamformer design for sum-rate
maximization sounds.

1The branch-and-bound algorithm generally has an exponential computa-
tional cost [10].

2POlynomial-Time algorithm forDifference ofConvex programming.
3For example, in [2] it has been shown that the rationumber of antennas

number of users
should diverge to infinity for the asymptotic results to hold.

In light of the above, the main contributions of this work
can be summarized as follows:

• The problem is considered in a rather general form
enabling the user to freely choose the number of operators
and the structure of the associated matrices (i.e., the
channel parameters).

• We devise an iterative method based on the minorization-
maximization technique to tackle the design problem.
Applying the proposed method increases the value of the
objective function (i.e., the sum-rate) at each iteration.
Therefore, it can be shown that the obtained solution
is a stationary point of the problem (under some mild
conditions, see [20] and references therein) satisfying
the first-order optimality criterion for arbitrary number
of operators. It is worth mentioning that the general
case with arbitrary number of operators leads to a more
difficult optimization problem—particularly, the current
methods based on semidefinite relaxation can be applied
only in the case of single operator (see the discussion
before Lemma 1).

• The proposed method is computationally efficient and
hence can be applied to large-scale MIMO systems as
well. Indeed, each iteration of the devised method con-
sists of solving a convex unconstrained quadratic pro-
gramme (QP); which can be efficiently done for instance
with an O(n2.3) complexity (wheren is the problem
dimension given by square of the number of antennas)
[21]. As a result, the method can handle problems with
n ∼ 103 variables (or equivalentlyMR ∼ 70) on an
ordinary personal computer (PC) within a few minutes.

The rest of this paper is organized as follows. In Section
II, we present the system model and problem formulation. We
propose an algorithm for designing the beamformer matrix in
Section III, followed by several observations in Section IV.
Section V includes several numerical examples. Through an
efficiency investigation, we show that the proposed method
can be applied to relays with large MIMO arrays. Finally,
conclusions are drawn in Section VI.

Notation: We use bold lowercase letters for vec-
tors/sequences and bold uppercase letters for matrices. See
Table I for other notations used throughout this paper.

II. PROBLEM FORMULATION

We consider a MIMO AF two-way relay network consisting
of MR antennas,L (communication) operators and pairs
of user terminals belonging to different operators (see the
discussion of Fig. 1 in Section I and [6] along with references
therein for details/practical applications of such systems). We
assume single-antenna user terminals and flat fading channels
between thekth user of thelth operator and the relay, which
are denoted by{hk,l} [1]. The received signal at the relay can
be expressed as [1], [6],

r =
L∑

l=1

2∑

k=1

hk,lxk,l + nR (1)

wherexk,l is the transmitted symbol by thekth user of the
lth operator with powerpk,l (given by E{|xk,l|2}), andnR
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TABLE I
NOTATIONS

x(k): the kth entry of the vectorx

‖x‖n: the ln-norm of the vectorx, defined as
(
∑

k |x(k)|
n
) 1

n

XH : the transpose conjugate of a matrixX
XT : the transpose of a matrixX
tr(X): the trace of a matrixX
λmax(X): the maximum eigenvalue of the hermitian matrixX
λn(X): the nth eigenvalue of the matrixX
‖X‖F : the Frobenius norm of a matrixX
X � Y: X−Y is positive semidefinite
⊗: the Kronecker product
vec(X): the vector obtained by column-wise stacking ofX

In: the identity matrix ofCn×n

e
(n)
l

: the lth standard basis vector inRn

R: the set of real numbers
C: the set of complex numbers
ℜ(x): the real part ofx
∇f(x): the gradient of the differentiable functionf(x)
∇2f(x): the Hessian of the two-times differentiable functionf(x)
f(n) = O(nx): f(n) is upper bounded byc nx for some0 < c <∞
E{x}: the expected value of the random variablex
x ∼ CN (0,Σ): the zero-mean random vectorx is distributed according

to the circularly symmetric complex Gaussian distribution
with covarianceΣ.

denotes the circularly symmetric white Gaussian noise with
covariance matrixσ2

RI at the relay. By employing the AF
protocol, the transmit signal of the relay is given by

r̃ = Gr (2)

with G ∈ CMR×MR being the relay amplification matrix,
which is to be designed. We assume reciprocal channels
between the relay and users [6]; consequently, the received
signalyk,l of the kth user at thelth operator becomes

yk,l = hT
k,lr̃+ nk,l (3)

wherenk,l is the associated (white) noise component (with
varianceσ2

k,l). The sum-rate of the system can be formulated
as [6]

Rsum =
1

2

L∑

l=1

2∑

k=1

log2(1 + ηk,l). (4)

Hereinηk,l denotes the signal-to-interference-plus-noise ratio
(SINR) for the kth user of the lth operator and it has
the following expression (see Appendix A for the detailed
derivation of this expression)

ηk,l =
gHΦk,lg

gH(Υk,l +∆k,l)g+ σ2
k,l

(5)

where g = vec(G) and the matricesΦk,l,Υk,l,∆k,l are
defined as

Φk,l = pk,l
(
hT
3−k,l ⊗ hT

k,l

)H (
hT
3−k,l ⊗ hT

k,l

)
(6)

Υk,l =
∑

k̃

∑

l̃ 6=l

p
k̃,l̃

(
hT

k̃,l̃
⊗ hT

k,l

)H (
hT

k̃,l̃
⊗ hT

k,l

)

∆k,l = σ2
R

(
IMR

⊗ (hk,lh
H
k,l)

T
)
.

Note that in the definition of the SINR in (5) and (6), the
effect of the “self-interference” has been ignored—due to the
assumption that terms corresponding to self-interferencecan

be canceled using the channel knowledge4 (see e.g., [25] and
[6] for details). The devised method in this paper, however,can
also be applied to the sum-rate maximization problem without
making such an assumption.

The sum-rate maximization is constrained via the total
available powerPR at the relay, viz.

E{‖r̃‖22} = tr{E{GrrHGH}} (7)

=

L∑

l=1

2∑

k=1

pk,l‖Ghk,l‖
2
2 + σ2

R‖G‖2F ≤ PR

which can be expressed with respect to (w.r.t.)g asgHCg ≤
PR where5

C = σ2
RIM2

R

+
L∑

l=1

2∑

k=1

pk,l((hk,lh
H
k,l)

T ⊗ IMR
). (8)

The aim is to design the AF amplification matrixG in order to
maximize the sum-rateRsum. Therefore, the design problem
(i.e., sum-rate maximization) in MIMO AF relay networks
with L operators can be cast as the following problem:

max
g

1

2

L∑

l=1

2∑

k=1

log2

(
1 +

gHΦk,lg

gH(Υk,l +∆k,l)g + σ2
k,l

)

s. t. gHCg ≤ PR. (9)

Note that the inequality constraint in the above problem is
active (i.e. satisfied with equality) at the optimal point. More
precisely, assume thatg is an optimal solution to (9) with
gHCg = P0 < PR. Then a scaled version ofg which
satisfies the constraint with equality, i.e.g1 =

√
PR/P0 g,

will lead to a larger objective value. This contradicts the
optimality assumption ofg. Considering this observation, the
optimization in (9) can be equivalently recast as the following
problem6:

max
g

L∏

l=1

2∏

k=1

gHAk,lg

gHBk,lg
(10)

s. t. gHCg = PR

where we have used the following definitions:

Bk,l = Υk,l +∆k,l +
σ2
k,l

PR

C, (11)

Ak,l = Bk,l +Φk,l.

The objective function of the problem (10) consists of the
product of several fractional quadratic functions. This problem

4The channel state information (CSI) of all links is requiredat the relay
which can be estimated if each user sends a training block of lengthNt ≥ 2L
to the relay [23]. Furthermore, the considered time-division duplex (TDD)
relaying leads to reciprocal channels between the users andthe relay [24].
Consequently, the downlink channel matrix can be obtained by transposing
the uplink one and taking calibration into account. At the users side, the
kth user oflth operator should only know two scalar parametershT

k,lGhk,l

andhT
k,l

Gh3−k,l for self-interference cancellation as well as data detection,
respectively (that may be estimated by forwarding the training signal received
by the relay).

5The derivations of (7) and (8) are similar to those developedin Appendix
A.

6In (10) we letk run from 1 to 2 as in (9); however, from a mathematical
point of view, the suggested approach can handle an arbitrary interval for k.
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Fig. 2. An illustration of the MaMi technique.

is non-convex and belongs to a class of NP-hard problems in
general [1].

III. SUM-RATE MAXIMIZATION

A. The Proposed Algorithm

Note that the objective function in (10) is invariant with
respect to scaling; therefore, we can deal with the uncon-
strained problem and then scale the solutiong such that it
satisfies the constraintgHCg = PR. In this paper, we use
the minorization-maximization (or majorization-minimization)
technique to tackle the non-convex design problem in (10).
Minorization-maximization (MaMi) is an iterative technique
that can be used for obtaining a solution to the general
maximization problem [20] [26]:

max
z

f̃(z) (12)

s. t. c(z) ≤ 0.

Each iteration (say theκth iteration) of MaMi consists of two
steps (see Fig. 2):

• Minorization Step: Finding̃p(κ)(z) such that its maxi-
mization is simpler than that of̃f(z) and p̃(κ)(z) mi-
norizesf̃(z), i.e.,

p̃(κ)(z) ≤ f̃(z), ∀z (13)

p̃(κ)
(
z(κ−1)

)
= f̃

(
z(κ−1)

)

with z(κ−1) being the value ofz at the(κ−1)th iteration.
• Maximization Step: Solving the optimization problem,

max
z

p̃(κ)(z) (14)

s. t. c(z) ≤ 0

to obtainz(κ).

Now, consider the following equivalent form of the problem
in (10):

max
g

L∑

l=1

2∑

k=1

[
log
(
gHAk,lg

)
− log

(
gHBk,lg

) ]
(15)

Note that the following inequality holds due to the concavity
of log(x) for all x, x0 ∈ R+:

log(x) ≤ log(x0) +
1

x0
(x− x0). (16)

Therefore, the term− log(gHBk,lg) can be minorized using
the above inequality at any giveng0. More precisely, setting
x0 = gH

0 Bk,lg0 and x = gHBk,lg leads to the following
minorizer for− log(gHBk,lg):

− log(gHBk,lg) ≥ (17)

− log(gH
0 Bk,lg0)−

1

gH
0 Bk,lg0

(gHBk,lg − gH
0 Bk,lg0).

Additionally, substituting the term− log(gHBk,lg) in (15)
with the above minorizer (and neglecting the constants) leads
to the following maximization problem at the(κ + 1)th

iteration:

max
g

L∑

l=1

2∑

k=1

[
log(gHAk,lg)−

1

(g(κ))HBk,lg(κ)
gHBk,lg

]
.

(18)
Inspired by the rich literature on semidefinite relaxation,we
note that by consideringX = ggH as the optimization variable
in (18) and dropping the rank-1 constraint, a convex alternative
of (18) can be obtained at each iteration (see e.g., [27]). Once a
solutionX is obtained, the optimized vectorg should be then
synthesized fromX. However, there is no guarantee for a rank-
1 solution7 X, and hence, this approach is associated with a
synthesis loss [28]. In addition, applying the relaxation leads
to iteratively solving a MAXDET problem possessing a high
computational burden (a similar algorithm has been suggested
in [1]). Instead, in the sequel, we devise a computationally
efficient method that increases the objective value at each
iteration and guarantees the first-order optimality condition for
the solutiong (under some mild conditions, see [20], [27] for
details). To this end, we proceed by finding a minorizer for the
term log(tr{Ak,lX}) as a function ofg using the following
Lemma.

Lemma 1. Lets(x) = − log(xHTx) andxHCx = P for any
positive-definite matricesT,C in CN×N as well asP ∈ R+.
Then, the following inequality holds∀ x,x0:

s(x) ≤ s(x0)+ℜ
(
bH(x− x0)

)
+(x−x0)

HU(x−x0) (19)

where

b =

(
−2

xH
0 Tx0

)
Tx0 (20)

U =

(
4P

wH
1 Cw1

+ ǫ

)
I

and wherew1 is the principal eigenvector ofT and ǫ > 0 is
arbitrary.

Proof: See Appendix B

Assume thatgHCg = PR at each iteration (see the
Remark 1 below). Now observe that using the above lemma,
the following minorizer is obtained for the termlog(gHAk,lg)
at any giveng0:

log(gHAk,lg) ≥ log(gH
0 Ak,lg0)−ℜ

(
(bk,l)

H
(g − g0)

)

−(g − g0)
HUk,l(g − g0) (21)

7Note that by employing the aforementioned semidefinite relaxation, a rank-
1 solutionX can be obtained just for the single operator case withL = 1
(see [1] for details).
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wherebk,l andUk,l are related toAk,l and can be calculated
by employing (20) in the Lemma (see (23) below). Based on
(18) and (21), we consider the minimization of the following
criterion w.r.t. g at the (κ + 1)th iteration of the proposed
method:

L∑

l=1

2∑

k=1

[
gH

(
Bk,l(

g(κ)
)H

Bk,lg(κ)
+Uk,l

)
g (22)

+ℜ

((
bk,l − 2Uk,lg

(κ)
)H

g

)]

with

bk,l =

(
−2

(
g(κ)

)H
Ak,lg(κ)

)
Ak,lg

(κ), (23)

Uk,l =

(
4PR

w̃H
k,lCw̃k,l

+ ǫ

)
I,

and w̃k,l denoting the principal eigenvector ofAk,l. The
above optimization problem can be recast as the following
unconstrained QP:

min
g

gHQ(κ)g + ℜ

((
q(κ)

)H
g

)
(24)

where

Q(κ) =
L∑

l=1

2∑

k=1

[
Bk,l(

g(κ)
)H

Bk,lg(κ)
+Uk,l

]
, (25)

q(κ) =

L∑

l=1

2∑

k=1

[
bk,l − 2Uk,lg

(κ)
]
. (26)

Note thatBk,l � 0, and alsoUk,l ≻ 0 because it is a
scaled version of identity matrixI with a positive scalar.
Therefore, the matrixQ(κ) is positive-definite at each iteration.
Consequently, the problem in (24) is strictly convex w.r.t.g.
The unique solution to this optimization is obtained by solving
the system of linear equations2Q(κ)g+ q(κ) = 0, viz.

g = −
1

2

(
Q(κ+1)

)−1

q(κ). (27)

It is worth noting that the solutiong to the above system
of linear equations can also be obtained via directly solving
the linear system using more efficient techniques, and thus
avoiding the inverse (see e.g., [29], [30], and the references
therein).

Remark 1:Note that the above solutiong does not necessar-
ily satisfy the constraintgHCg = PR of the original problem
(10) at each iteration. As mentioned before, we can scale the
obtained solution at the convergence to deal with this issue
as the objective function in (10) is scale invariant. However,
the derivation of the matrixUk,l in Lemma 1 requires the
satisfaction of the constraint at each iteration; see Appendix B
for details. Therefore, we need to scale the obtainedg at
each iteration such thatgHCg = PR. Note also that the
scaling does not affect the convergence of the sequence of the
objective function values associated with the problem (10). �

Table II summarizes the steps of the proposed method
for relay beamformer design to maximize the communication

TABLE II
THE PROPOSED METHOD FOR SUM-RATE MAXIMIZATION VIA RELAY

BEAMFORMER DESIGN

Step 0: Initialize g with a random vector inCM2

R (and scale it such that
gHCg = PR); setκ = 0.
Step 1: ComputeQ(κ) andq(κ) using (25).
Step 2: Solve the convex problem in (24) using either the closed-from
expression (27) or direct methods (for solving the associated system of
linear equations) to obtaing(κ+1).
Step 3: Scale the obtained solutiong(κ+1) such that
(g(κ+1))HCg(κ+1) = PR; setκ← κ+ 1.
Step 5: Repeat steps 1-3 until a pre-defined stop criterion is satisfied,
e.g. |f(κ+1) − f(κ)| ≤ ξ (wheref denotes the objective function of the
problem (10)) for someξ > 0.

sum-rate. The suggested method improves the value of the
objective function at each iteration (see Section IV-B). Note
that the computational complexity of the method is linear with
the number of iterations̄N . Furthermore, each iteration of the
algorithm consists of solving a strictly convex problem (24)
using either the closed-form solution in (27) or direct/iterative
methods for solving systems of linear equations [29], [30].
The steps for computing the solution can be implemented e.g.
via the algorithms in [21] (for matrix multiplications) with
O(n2.3) complexity wheren = M2

R is the problem dimension.
The devised method can handle problems of dimension on
the order of103 variables on an ordinary PC within a few
minutes. The computational efficiency of this method makes
it potentially useful in large-scale MIMO systems (see [31]
for descriptions of a recently developed prototype of such
systems). We herein also remark on the fact that the MaMi
algorithms were originally developed to achieve a very low
computational burden by avoiding complicated matrix inver-
sions that are an indispensable part of off-the-shelf optimiza-
tion packages; see, e.g. [32]. Also, comparisons with various
methods show that MaMi algorithms are usually difficult to
beat in terms of stability and computational simplicity [26].

B. Weighted Sum-Rate Maximization

In practice, the users of specific operators may have a higher
priority compared to others. In such cases, a maximization of
the weighted sum-rate becomes of interest. The weighted sum-
rate is given by

1

2

L∑

l=1

2∑

k=1

wk,l log2(1 + ηk,l) (28)

with wk,l being the (non-negative) weights associated with
the kth user of the lth operator. Similar to the sum-rate
maximization case, the corresponding optimization problem
can be cast as

max
g

L∏

l=1

2∏

k=1

(
gHAk,lg

gHBk,lg

)wk,l

(29)

s. t. gHCg = PR.

The above problem can be dealt with via the proposed method
in this paper after some minor modifications. To see this,
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consider the following equivalent form for the problem in (29):

max
g

L∑

l=1

2∑

k=1

wk,l

[
log
(
gHAk,lg

)
− log

(
gHBk,lg

) ]

and note that solutions to the above problem, which is a
modified version of (15), can be obtained via the algorithm
in Table II, using

Q(κ) =

L∑

l=1

2∑

k=1

wk,l

[
Bk,l(

g(κ)
)H

Bk,lg(κ)
+Uk,l

]
, (30)

q(κ) =

L∑

l=1

2∑

k=1

wk,l

[
bk,l − 2Uk,lg

(κ)
]
, (31)

in lieu of (25)-(26).

IV. SUM-RATE UPPER BOUND AND SOME

COMPUTATIONAL ASPECTS

A. Sum-Rate Upper Bound

In the following, we derive an upper bound on the objective
function of (10), and the associated sum-rate metric. Note that
the boundedness of (10) is a key fact for the convergence of
the proposed method—see Section IV-B below for details. We
observe that each term of the product on the right-hand side
of

22Rsum =

L∏

l=1

2∏

k=1

gHAk,lg

gHBk,lg
(32)

can be bounded from above by considering the related gener-
alized eigenvalue problem, viz.

gHAk,lg

gHBk,lg
≤ λmax

{
B−1

k,l
Ak,l

}
. (33)

Moreover, as the sum-rate is invariant with respect to permu-
tations of the matrices{Ak,l} and{Bk,l} within the products,
the upper bound may be strengthened by considering such per-
mutations. More precisely, letπ(k, l) : {1, 2}×{1, · · · , L} →
{1, 2} × {1, · · · , L} denote a generic permutation function
over all possible(k, l). Then, according to the generalized
eigenvalue upper bound,

gHAπ(k,l)g

gHBk,lg
≤ λmax

{
B−1

k,lAπ(k,l)

}
(34)

which implies

Rsum ≤
1

2
log2

(
min
π(k,l)

{
L∏

l=1

2∏

k=1

λmax

{
B−1

k,lAπ(k,l)

}})
.

(35)
Next note that the equality in (34) is attained wheng is a
principal eigenvector of the matrixB−1

k,lAπ(k,l). As a conse-
quence, the upper bound in (35) is attained when matrices
A, B, and {Uk,l} (with B, and {Uk,l} being invertible)
exist such thatAπ(k,l) = AUk,l andBk,l = BUk,l, for all
(k, l) ∈ {1, 2} × {1, · · · , L}. This shows that the bound in
(35) is tight and it can not be improved upon unless the class
of matrices{Ak,l,Bk,l} is restrained.

B. Convergence

In order to study the convergence of the devised approach,
observe that

f
(
g(κ−1)

)
= p(κ)

(
g(κ−1)

)
(36)

≤ p(κ)
(
g(κ)

)
≤ f

(
g(κ)

)

wherep(κ)(.) is the minorizer associated with the objective
f(.) at theκth iteration. The first inequality in (36) holds due
to the maximization step at theκth iteration, whereas the sec-
ond inequality comes from the definition of the minorizer (see
(13)). This monotonically increasing property together with
the derived upper bound in (35) guarantees the convergence
of the sequence of the objective values{f

(
g(κ)

)
}, and hence

of the sum-rate metric. Note that the obtained solutions viathe
proposed method are stationary points of the problem (under
some mild conditions [20]) satisfying the first-order optimality
criterion for the non-convex problem (10).

C. Practical Real-Time Applications

The communication channels{hk,l} are subject to change
with time in real-world applications in particular due to the
relative motions of users/relay/scatterers. The time intervals
for which the channels can be assumed to be invariant depend
on the Doppler spreads of the channels (see e.g., [33], [34]
for details). Note that for any new set of channel parameters
{hk,l}, a new beamforming matrixG is to be designed.
Therefore, the convergence speed (computational complexity)
associated with the design method plays an important role in
the applicability of the method. In addition to general results
on the computational efficiency of the proposed method, an
interesting aspect of the proposed method is that the quality of
the obtained solution and the convergence speed depend on the
employed starting point (see Section V and [20] for details).
Therefore, in real-time applications where the communication
channels{hk,l} change with time, the proposed method can
quickly converge if initialized with the preceding solution g.
Note also that in practical real-time applications, the method
can be implemented more efficiently (e.g., via implementation
in C language, parallelization, and so on) and be run on
powerful digital signal processors (DSP/FPGA) to speed up
the convergence significantly (see the discussion of Table II
as well).

V. NUMERICAL EXAMPLES AND DISCUSSIONS

In this section, the performance of the proposed method is
evaluated via Monte-Carlo simulations. An AF based bidirec-
tional MIMO relay network withL operators andMR antennas
at the relay is considered. The variances of the Gaussian
noises for the relay and users are assumed to be equal, i.e.,
σ2
R = σ2

k,l = σ2
n. For the sake of comparison, we use the same

power allocation as considered in other related works (see e.g.,
[1], [6] and the references therein); namely, we assume that
the transmit powers of the relay and users are identical, i.e.,
PR = pk,l = p. The signal-to-noise ratio (SNR) is defined as
p/σ2

n. Moreover, the normalized distance betweenkth user of
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the lth operator and the relay is represented bydk,l. For sim-
plicity and without loss of generality, we assume thatd1,l = d1
andd2,l = d2 (with d1+d2 = 1). Therefore, the near-far (N/F)
ratio is defined asd1/d2. The Rayleigh flat fading channel
vectors{hk,l} are reciprocal and spatially uncorrelated. The
path loss exponent is assumed to be3 in all simulations, thus
the fading variances are proportional to1/d3k,l [33], [34]. As
a result,{hk,l} are modeled as independent Gaussian random

vectors withhk,l ∼ CN
(
0, (d0/dk,l)

3
I
)

where d0 = 0.1

is the considered reference point. All the results are presented
considering100 realizations of the associated fading channels.
As to the convergence of the proposed method, we consider
ξ = 10−3 in Table II. The QP of the step 1 of the proposed
method (see Table II) is solved using the embedded MATLAB
function for directly solving systems of linear equations8.

We begin by investigating the effect of the SNR on the
sum-rate in a symmetric scenario (i.e.,d1 = d2). The sum-
rate values associated with the proposed method as well as
the POTDC method of [1] versus SNR are shown in Fig. 3
for MR = 4 and MR = 8 with L = 2. As expected, the
sum-rate is increasing with respect to SNR. Furthermore, the
results of the proposed method are slightly better than those of
the method in [1] because the proposed method circumvents
the synthesis loss associated with POTDC. This figure also
includes the results for ZF and MRC method withMR = 4, 8
and MR = 20 (that can be considered as a large-scale
MIMO scenario). It can be observed that the proposed method
outperforms well ZF and MRC methods. This observation is
compatible with the fact that ZF and MRC are merely nearly
optimal when the number of antennas diverges to infinity.
Next, we study the effect of the N/F ratio. Fig. 4 plots the sum-
rate values versus different N/F ratios (L = 2, SNR=20dB).
The proposed method achieves better results in the whole
interval of the N/F ratio when compared to other methods.
Note that the N/F ratio is defined asd1/d2 and the maximum
rate is achieved in the symmetric scenario where the relay is
in the middle of users (see [4] for more details and [1], [6]
for similar behaviors). Note that in the above figures, we do
not include the results of POTDC method forMR = 20 due
to prohibitive computational burden.

It can be observed from Fig. 3 and Fig. 4 that the larger
the number of antennasMR, the larger the sum-rate. This
aspect is further explored in Fig. 5 (a) and (b) where the
values of sum-rate are plotted versusMR for L = 1 and
L = 2, respectively. Fig. 5 (a) also includes two ad-hoc
algorithms, namely 1-D RAGES and 2-D RAGES [1] along
with the upper bound [15] on the sum-rate values forL = 1.
The monotonically increasing behavior of the sum-rate with
respect toMR is evident from these figures. This behavior
can be justified by considering the fact that larger values of
MR (i.e., more antennas at the relay) provide more degrees of
freedom for the design problem. For the case ofL = 1, the
differences between the sum-rate values of various methods
are minor. Note that the curves associated with POTDC, 1-
D RAGES, and 2-D RAGES are truncated for larger values

8The reader may refer to the MATLAB command “A\b” for obtaining the
solution to the linear systemAx = b.

0 5 10 15 20 25 30
0

5

10

15

20

25

 

 

su
m

-r
at

e
(b

it/
se

c/
H

z)

MRC, MR = 4

MRC, MR = 8

MRC, MR = 20

ZF, MR = 4

ZF, MR = 8

ZF, MR = 20

POTDC,MR = 4

POTDC,MR = 8

Proposed,MR = 4

Proposed,MR = 8

Proposed,MR = 20

SNR (dB)

Fig. 3. The values of sum-rate associated with the proposed method and the
method of [1] (i.e., POTDC), ZF, as well as MRC versus SNR forL = 2.
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of MR due to the prohibitive computational burden of these
methods. We further note that the proposed method tracks the
upper bound for variousMR well.

Fig. 5 (a) and (b) plot the sum-rate values for the ZF as
well9. It can be observed from Fig. 5(b) that for a wide range
of the consideredMR, the proposed method outperforms well
the ZF, as expected (see the explanations related to lower-
regime massive in Section I). Then, by further increasing the
number of antennas, ZF tends to the obtained values by the
proposed method (massive regime). Note that the borderline
between the lower-regime massive and massive is not sharp
and also depends on other parameters like the number of
operatorsL; e.g., in Fig. 5(a), at smaller values ofMR we
have similar sum-rate values for the proposed method and ZF
(this point will be analyzed shortly–see Fig. 6 below).

It can also be observed from Fig. 5 (a) and (b) that the sum-
rate forL = 1,MR = 2 is larger than that of the case with

9we do not include the results of MRC because forL = 1 is very similar
to ZF and forL = 2 is not competitive.
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Fig. 5. The sum-rate values for various methods versus the number of antennasMR: (a) the case ofL = 1, (b) the case ofL = 2. The SNR is set to20dB.

L = 2,MR = 2. This can be explained considering the fact
that in the case ofL = 2, the interference power for the users
of the first (second) operator grows due to the existence of
the interferences corresponding to users of the second (first)
operator; whereas, when the system has one operator, the
interference power only comes from the relay/receivers’ noise.
This leads to a lower sum-rate value for the system with two
operator (andMR = 2). Note that by increasing the number
of antennasMR, a judicious design of the relay beamformer
matrix G decreases the interference power and as a result,
larger sum-rate values will be obtained (see Fig. 5 (a) and
(b)). However, for smallMR, there are not sufficient degrees of
freedom (in the design problem) to circumvent the interference
power associated with the second operator. Therefore, one
can conclude that a large number of antennas for the relay
becomes quite useful when several operators are supposed to
work simultaneously.

The effect of the number of operatorsL is considered in
Fig. 6. The figure shows the sum-rate values versusL for
MR = 20 and SNR=20dB. The figure includes the results of
the proposed method and ZF (we do not include MRC herein
as it is not competitive). Also, the POTDC has prohibitive
computational time forL > 2 and RAGES methods can not
be applied forL > 1. It is observed that largerL leads to
more significant gap between the proposed method and ZF.
This behavior can be explained considering the fact that the
asymptotical near optimality of ZF depends on the number of
operatorsL in addition to the number of antennasMR (see
Section I and [2]).

The computational times of the various methods for tackling
the sum-rate optimization problem (10) are analyzed in Fig.
7 (a) and (b), respectively. The figures illustrate the average
computational time considering10 runs of the methods with
random initializations on an ordinary PC (with 8GB RAM and
CPU CoRe i5). It can be seen that the POTDC method has
the highest computational burden as compared to the other
methods (note that the values for POTDC correspond to10
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Fig. 6. The values of sum-rate associated with the proposed method and ZF
versus the number of operatorsL. The values ofMR and SNR are set to20
and20dB, respectively.

iterations). The 1-D RAGES and 2-D RAGES algorithms can
be employed for up toMR = 40 [1]. It is observed that the
proposed method has much lower computational cost when
compared to the existing methods. To be more precise, the
computational time of our method is on the order of (at
most) a few seconds atMR ∼ 40, 50. We remark on the
fact that the ZF and MRC methods have lower computational
burden when compared to the proposed method; however, the
resulting sum-rate values by these methods are considerably
lower than that of the proposed method in conventional and
large-scale (lower-regime massive) MIMO systems (see e.g.,
Figs. 3, 4, 5, and 6 and the discussion in Section I). Therefore,
meaningful improvements in the sum-rate values (i.e., locally
optimal values) can be achieved by the proposed method
in conventional/large-scale MIMO systems with the cost of
higher computational burden as compared to the ZF/MRC (see
Section IV-C for a discussion of the computational time and
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Fig. 7. The average run-time (seconds) for various methods versus the number of antennasMR associated with Fig. 5: (a) the case ofL = 1, and (b) the
case ofL = 2. Note that the problem dimension is given byn = M2

R
.

practical applications).
We next investigate the initialization and convergence

speed/time of the proposed method. To analyze the random
initialization, we report the histogram of the convergencetimes
on a standard PC (see above) for various random initiations.
We consider200 independent random Gaussian vectors in
CM2

R with i.i.d. elements. Fig. 8 (a) and (b) plot the afore-
mentioned histograms for the case ofL = 1 as well asL = 2,
respectively (assumingMR = 20 and SNR=20dB). It can be
observed that the histograms are concentrated well around the
corresponding averaged values in Fig. 7. The convergence
time of the proposed method when it is initialized by the
sub-optimal solutions are drawn in Fig. 9 versusMR. In this
figure, the ZF and MRC points are employed to initialize the
proposed method for SNR=20dB. As expected, such starting
points speed up the convergence of the algorithm as compared
to the random initiation.

VI. CONCLUSION

The problem of sum-rate maximization in MIMO AF relay
networks with multi-operator was considered. The aim was
to optimally design the relay beamforming matrix in order to
maximize the communication sum-rate. The design problem
was cast as the maximization of a product of many fractional
QPs subject to the relay power constraint, which belongs to
a class of NP-hard problems in general. We devised an itera-
tive method based on the minorization-maximization (MaMi)
technique to deal with the problem. The minorizers for the
objective function terms were derived by using linear and
quadratic minorizers for matrix/vector functions. The proposed
method provides quality solutions to the design problem (i.e.,
stationary points of the problem, under some mild conditions)
for an arbitrary number of operatorsL. Each iteration of the
proposed method was dealt with via solving an unconstrained
(strictly) convex QP either using a closed-form solution or
by solving a system of linear equations. Numerical examples

confirmed the effectiveness of the proposed method when
compared to other methods in terms of the solution quality
and the computational efficiency. In particular, the method
could handle design problems of dimensions of up to several
thousands variables (equivalently, a number of antennas ofup
to MR ∼ 70) on an ordinary PC within a few minutes, which
makes it potentially useful in large-scale MIMO scenarios.
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APPENDIX A
THE DERIVATION OF THE SINR EXPRESSION IN(5)

Note that the SINRηk,l for thekth user of thelth operator
can be computed via the following expression:

ηk,l =
E{|hT

k,lGh3−k,lx3−k,l|2}

E{|
∑

k̃,l̃ 6=l
hT
k,lGh

k̃,l̃
x
k̃,l̃
|2}+ E{|hT

k,lGnR|2}+ σ2
k,l

(37)
in which the numerator can be expanded as

E{|hT
k,lGh3−k,lx3−k,l|

2}

= E{|x3−k,l|
2}(hT

k,lGh3−k,l)(h
T
k,lGh3−k,l)

∗

= pk,ltr{(h
T
k,lGh3−k,l)

H}tr{hT
k,lGh3−k,l}

= pk,lvec(G)H
(
(hT

3−k,l ⊗ hT
k,l)

H(hT
3−k,l ⊗ hT

k,l)
)

vec(G)

In the above we have used the fact that the scalarhT
k,lGh3−k,l

can be alternatively written as(hT
3−k,l ⊗ hT

k,l)vec(G) consid-
ering the Kronecker product propertytr{ABC} = (CT ⊗
A)vec(B) [35]. Now by definingg = vec(G) and

Φk,l = pk,l(h
T
3−k,l ⊗ hT

k,l)
H(hT

3−k,l ⊗ hT
k,l)

the numerator ofηk,l in (37) can be rewritten asgHΦk,lg.
Using similar calculations, the terms in the denominator of
the SINRηk,l in (37) can be straightforwardly expressed as
they are stated in (5) and (6). Note that (7) and (8) can also
be verified via similar techniques.

APPENDIX B
PROOF OFLEMMA 1

We begin the proof by separating the real and imaginary
parts of the variablex ∈ CN as [zT yT ]T ∈ R2N . Next, we
consider the Taylor expansion of the functions

(
[zT yT ]T

)

which leads to a standard quadratic majorizer [26]. It can
be verified that by employing straightforward techniques, the
aforementioned majorizer can be expressed w.r.t.x as

s(x) ≤ s(x0) + ℜ
(
∇s(x)H |x=x0

(x− x0)
)

(38)

+(x− x0)
HU(x− x0)

for all x,x0. Note that the existence ofU � 0 such that
∇2s(x) � U for all x guarantees holding of the above
inequality [26]. In the sequel, we derive the matrix boundU

on ∇2s(x). Let h(x) = xHTx andx = [zT yT ]T ; using the
results of [35], [36] it is verified that

∇s(x) =
−1

h(x)
∇h(x) =

−2Tx

xHTx
, (39)

∇2s(x) =
−1

h(x)
∇2h(x) +

∇h(x)∇h(x)H

∇2h(x)

=
−2T

xHTx
+

4TxxHT

(xHTx)2
.
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Note thatT � 0, and therefore, the first term in the expression
of ∇2s(x) is negative-definite. As a result, it suffices to obtain
γ > 0 such that

4TxxHT

(xHTx)2
� γI. (40)

Herein, we remark on the fact that several algebraic bounds
can be obtained satisfying (40); however, the tightness of
the bound affects the convergence speed and quality of the
solution. Therefore, in what follows, we derive the bound
considering an optimization problem. Indeed, as the matrix
TxxHT is rank-one, we can selectγ asγ > 4ζ with

ζ = max
x

xHT2x

(xHTx)2
(41)

The positive definiteness of the matrixT ensures existence
of the full-rank (square) matrixV such thatT = VVH . Let
a = VHx and consider the following equivalent expression
for the above objective function w.r.t.a:

(
aH(VHV)a

aHa

)(
1

aHa

)
.

The latter change of variables leads to the following optimiza-
tion problem10:

max
a

(
aH(VHV)a

aHa

)(
1

aHa

)
(42)

Now, we proceed by solving the above optimization problem in
order to obtainζ. Observe that the first factor in the objective
of the problem in (42) is independent of‖a‖2. Indeed, by
noting that the expressiona

H(VHV)a
aHa

is a Rayleigh quotient
[35], one can immediately obtain its maximum value given by
λmax(V

HV). This value is achievable by choosinga to have
the samedirection (i.e. a/‖a‖2) as the principal eigenvector
of the matrixVHV, denoted byv1. Once the direction of the
optimal a (i.e. a/‖a‖2 = v1) is obtained, the value of‖a‖2
can be calculated by considering the constraintxHCx = P .
More concretely, we have

(V−Ha)HC(V−Ha) = P

which yields

‖a‖2 =

√
P

vH
1 V−1CV−Hv1

. (43)

The maximum value of the objective function in (42) is thus
given by

ζ =

(
P

vH
1 V−1CV−Hv1

)
λmax(V

HV) (44)

=

(
P

vH
1 V−1CV−Hv1

)
λmax(T).

Consequently, we can selectγ = 4ζ + ǫ for someǫ > 0 to
bound∇2s(x). Note that asT ≻ 0, the matrixV is invertible.

10Due to the fact thatT ≻ 0, the optimalx can be uniquely determined
via the optimala.

Finally, using (38), (39), (44), and the discussions above we
obtain

b , ∇s(x)|x=x0
=

−2Tx0

xH
0 Tx0

(45)

U ,

(
4P

w1
HCw1

+ ǫ

)
I

wherew1 is the principal eigenvector of the matrixT; and
hence the proof is complete.
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