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Abstract—Visual motion perception in biological vision systems
is typically modeled via a set of elementary motion detectors
(EMDs) forming a spatially distributed network. This paper
addresses the problem of estimating the weights of such an EMD
construct from a linear combination of their output signals.
This challenge arises in e.g. mathematical modeling of animal
motion perception. In particular, the spatial excitation properties
of sinusoidal gratings are important since these basis signals are
typically utilized as visual stimuli in biology. It is demonstrated
that one cannot uniquely estimate the weights of more than three
contributing EMDs with a single frequency sinusoidal grating as
the visual stimulus. However, a higher spatial excitation order can
be obtained with multi-frequency sinusoidal grating stimuli. Two
approaches to the design of stimuli with a given spatial excitation
order are presented. Several numerical examples are provided to
examine the performance of the proposed stimuli design methods.

I. INTRODUCTION

The concept of the correlator type elementary motion de-

tector (EMD) in biological motion vision was introduced in

the middle of the last century [5]. Today the mathematical

EMD model is generally accepted as an explanation to visual

responses to wide field motion in many different animals. De-

spite its wide support, nobody has directly measured the output

of a single EMD so far, due to the fact that the associated

neural circuitry cannot be located accurately. Nevertheless,

recordings can be made in the fly optic ganglia, from lobula

plate tangential cells (LPTCs) that are believed to spatially

pool the output from many EMDs (see e.g. [3]). It is worth

pointing out that hundreds of EMDs are expected to contribute

to an experimentally measurable LPTC neural response [1].

In a previous paper on the identification of the EMD layer

[7], a method for estimating the weights of the contributing

identical EMDs has been proposed. The method yields a

unique estimation of the weights, under the assumption that the
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visual stimulus provides enough excitation so that the outputs

of the individual EMDs are distinguishable from each other.

The spatial excitation properties of stimuli in laboratory

experiments have always made an important topic in different

areas of biomedical research, such as in fat-water separation

based on magnetic resonance imaging [8] or in the studies

of the human visual system [4]. In this paper, a study of

excitation properties of the sinusoidal grating stimuli for the

identification of a layer of spatially distributed detectors from

a linear combination of the output signals of the participating

EMDs representing an LPTC response is reported. The class

of sinusoidal gratings is selected due to their popularity with

the biologists and the ease of implementation.

The paper is organized as follows. First, the EMD layer

model is briefly summarized. Then the response of the EMD

layer to both single and multiple frequency sinusoidal gratings

is derived. Two approaches to sinusoidal grating stimulus de-

sign for higher spatial excitation orders are presented. Finally,

simulation results are provided to illustrate the theoretical

insights of the paper.

II. IDENTIFIABILITY PROPERTIES OF THE EMD LAYER

The EMD model originally formulated in [5] can be sum-

marized in mathematical terms as follows:

v+(t) =

∫ t

0

w+(t− θ)u+(θ) dθ,

v−(t) =

∫ t

0

w−(t− θ)u−(θ) dθ, (1)

y(t) = v+u− − v−u+,

where u+ and u− are the scalar inputs of the EMD, y is

the output, and w+ and w− are the impulse responses of the

low-pass filters in the input channels. Both w+ and w− are

here assumed to be finite-dimensional, to simplify calculations.

This assumption is, however, not crucial for the forthcoming

analysis and can be dropped with some additional analytical

effort, see [7].
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Notice that (1) is a Wiener system with a static bilinear

output transformation. The EMD model considered in biology

is typically symmetrical, i.e. w+ and w− are identical [2]. This

construction is generally known as a symmetrical EMD model

and is the focus of this paper. Despite the output nonlinearity,

the frequency of a single-tone sinusoidal input is preserved

in the steady-state response of a symmetric EMD model.

However, this is not true when w+ �= w−, see [7].

It is believed that the EMDs are uniformly spatially dis-

tributed in a flat layer and all possess identical dynamics.

Under this assumption, the visual input to neighbouring EMDs

has identical shape, but the inputs are shifted in time.
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Fig. 1. Schematic illustration of an EMD layer. Abbreviations are explained
in the main text.

Let y(t, n) denote the output of the n-th EMD in the layer,

then the measured signal of the EMD-layer output is modeled

as

yN (t) =
N∑
j=1

gjy(t, j) =
N∑
j=1

gjy(t− τj), (2)

where gj , τj , j = 1, . . . , N are unknown constants character-

izing the individual contributions of the EMDs in the layer.

In order to obtain a unique solution for the EMD weights,

γ =
[
g1 . . . gN

]T
, N linearly independent EMD responses

are required. In other words, the stimulus provided to the EMD

layer has to possess the spatial excitation order of at least N .

EMD layer response to sinusoidal grating stimuli

A visual stimulus consisting of a sinusoidal grating exciting

the two input channels of the n-th EMD in a layer results in

the following input signal forms

u+(t, n) = c0 + c1 sin(ωt+ φ+ ñδ),

u−(t, n) = c0 + c1 sin(ωt+ φ+ nδ),

where ñ = n − 1. The signal form of the stimulus is thus

parametrized in terms of the frequency ω and the phase shift

φ. The weights c0 and c1 represent the mean luminance of the

pattern and the pattern contrast of the grating in the laboratory

experiments. The constant δ is the phase difference between

the two input channels resulting from the temporal delay (and

spatial separation) between the channels τ that is evaluated to

δ = −ωτ.

Since the EMD dynamics are assumed to be known, a

first-order linear block is treated, without loss of generality.

Indeed, these simple dynamics alone capture the behavior of

the biological data quite well [6]. For the symmetrical EMD

model with the linear block transfer function

W (s) =
K

s+ a
,

the EMD output is given by

y(t, n) = yt(t, n) + ys(t, n),

where yt(t, n) and ys(t, n) represent the transient and the

steady-state response, respectively. It can be shown by a

straightforward calculation that the transient response is

yt(t, n)=
2c1K sin

(
δ
2

)
a
√
a2 + ω2

e−at

[
c1a cos

(
δ

2

)
sin

(
ωt+tan−1

(ω
a

))

+ c0 sin(nδ)

(√
a2 + ω2 sin

(
ωt+ φ− δ

2

)

+ a cos

(
φ− δ

2
+ tan−1

( a

ω

)))

+ c0 cos(nδ)

(
−

√
a2 + ω2 cos

(
ωt+ φ− δ

2

)

+ a sin

(
φ− δ

2
+ tan−1

( a

ω

)))]
, (3)

while the steady-state response is given by

ys(t, n) =
2c1K sin

(
δ
2

)
a
√
a2 + ω2

[
− c1aω cos

(
δ
2

)
√
a2 + ω2

−c0 sin(nδ) sin

(
ωt+ φ− δ

2
+ tan−1

( a

ω

))

+ c0 cos(nδ) cos

(
ωt+ φ− δ

2
+ tan−1

( a

ω

))]
. (4)

From (3) and (4), it is seen that the response of n-th EMD

to a sinusoidal grating comprises three linearly independent

(as functions of n) terms. Since the decay rate of the tran-

sient EMD response is relatively high due to the fast linear

dynamics, this identifiability analysis takes into account only

the steady-state response part.
To simplify the computations, define ỹs(t, n) as a normal-

ized version of (4) such that

ỹs(t, n) = c̃−sin(ωt+ φ̃) sin(nδ)+cos(ωt+ φ̃) cos(nδ), (5)

where

ỹs(t, n) =ys(t, n)
a
√
a2 + ω2

2c0c1Kω sin( δ2 )
,

c̃ =− ac1 cos(
δ
2 )

c0
√
a2 + ω2

,

φ̃ =φ− δ

2
+ tan−1

( a

ω

)
.
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From (2) and (5), the normalized steady-state output of the

EMD layer is

ỹN,s(t) =c̃

N∑
n=1

gn − sin(ωt+ φ̃)

N∑
n=1

gn sin(nδ)

+ cos(ωt+ φ̃)
N∑

n=1

gn cos(nδ).

The expression above can be represented in a matrix form as

Y =Ξγ, (6)

Ξ =c̃1(M+1)×N − f̃s ⊗ zs + f̃c ⊗ zc,

where 1(M+1)×N is an (M +1)×N matrix of unit elements,

⊗ is the tensor product of vectors, and

f̃s =
[
sin(φ̃) sin(ωT + φ̃) . . . sin(MωT + φ̃)

]T
f̃c =

[
cos(φ̃) cos(ωT + φ̃) . . . cos(MωT + φ̃)

]T
zs =

[
sin(δ) sin(2δ) . . . sin(Nδ)

]T
zc =

[
cos(δ) cos(2δ) . . . cos(Nδ)

]T
.

The vector Y stands for the EMD layer steady-state output

vector and the vector γ is comprised of the weights of the

participating EMDs

Y =
[
ỹN,s(0) ỹN,s(T ) . . . ỹN,s(MT )

]T
,

γ =
[
g1 g2 . . . gN

]T
.

In (6), the rank of Ξ determines the largest number of EMD

weights that can be uniquely estimated from Y . By inspection

of the structure of the matrix Ξ in (6), it always holds that

rank Ξ ≤ 3 and one concludes that only three EMDs can be

uniquely distinguished among by means of a one-frequency

sinusoidal grating, i.e. N ≤ 3.

EMD layer response to multiple frequencies

In the previous section it was shown that a single-tone

sinusoidal grating stimulus, as typically used in insect motion

vision, is not sufficient for identifying more than three unique

EMDs in a layer. At the same time, hundreds of EMDs

are expected to contribute to the neural response recorded

from LPTCs. Therefore, the stimuli have to possess a high

spatial excitation order to enable an unambiguous estimation

of the EMD layer. One feasible solution is to utilize a grating

composed of a sum of sinusoids as stimulus. This is well in

line with Fourier series as a means of representing bounded

periodical signals.

For r sinusoidal grating, the input signals to n-th EMD are

defined as follows:

u+(t, n) = c0 +
r∑

i=1

ci sin(ωit+ φi + ñδi),

u−(t, n) = c0 +
r∑

i=1

ci sin(ωit+ φi + nδi).

To avoid unnecessary cumbersome expressions, the derivation

below is carried out for the case of r = 2 but it can be

generalized in a straightforward manner to an arbitrary r by

expanding the involved sums.

Similarly to the case of a single-tone sinusoidal grating

stimulus, the EMD response to a sum of sinusoidal gratings

comprises a transient and a steady-state component. The tran-

sient response can be written as

yt(t, n)=
2e−at

a

2∑
i=1

ciK sin
(
δi
2

)
√

a2 + ω2
i

[
cia cos

(
δi
2

)

× sin
(
ωit+ tan−1

(ωi

a

))
+ c0 sin(ñδi)

(√
a2 + ω2

i sin

(
ωit+ φi +

δi
2

)

+ a cos

(
φi +

δi
2
+ tan−1

(
a

ωi

)))

+ c0 cos(ñδi)

(
−

√
a2 + ω2

i cos

(
ωit+ φi +

δi
2

)

+ a sin

(
φi +

δi
2
+ tan−1

(
a

ωi

)))]

+
c1c2K

a2 + ω2
1

e−at

[(
ω1 cos(φ1 + ñδ1)− a sin(φ1 + ñδ1)

)
× sin(ω2t+ φ2 + nδ2)

−
(
ω1 cos(φ1 + nδ1)− a sin(φ1 + nδ1)

)

× sin(ω2t+ φ2 + ñδ2)

]

+
c1c2K

a2 + ω2
2

e−at

[(
ω2 cos(φ2 + ñδ2)− a sin(φ2 + ñδ2)

)
× sin(ω1t+ φ1 + nδ1)

−
(
ω2 cos(φ2 + nδ2)− a sin(φ2 + nδ2)

)

× sin(ω1t+ φ1 + ñδ1)

]
,

while the steady-state response reads as

ys(t, n) =
2∑

i=1

2ciK sin
(
δi
2

)
a
√
a2 + ω2

i

[
− ciaωi cos

(
δi
2

)
√
a2 + ω2

i

− c0 sin(nδi) sin

(
ωit+ φi − δi

2
+ tan−1

(
a

ωi

))

+ c0 cos(nδi) cos

(
ωit+ φi − δi

2
+ tan−1

(
a

ωi

))]

+
c1c2K

a2 + ω2
1

[(
a sin(ω1t+ φ1 + ñδ1)

− ω1 cos(ω1t+ φ1 + ñδ1)

)
sin(ω2t+ φ2 + nδ2)

−
(
a sin(ω1t+ φ1 + nδ1)− ω1 cos(ω1t+ φ1 + nδ1)

)

× sin(ω2t+ φ2 + ñδ2)

]

742



+
c1c2K

a2 + ω2
2

[(
a sin(ω2t+ φ2 + ñδ2)

− ω2 cos(ω2t+ φ2 + ñδ2)

)
sin(ω1t+ φ1 + nδ1)

−
(
a sin(ω2t+ φ2 + nδ2)− ω2 cos(ω2t+ φ2 + nδ2)

)

× sin(ω1t+ φ1 + ñδ1)

]
. (7)

Once again, neglecting the transient component that vanishes

at a high convergence rate, the main focus of the analysis is put

on the sustained steady-state response of the EMD. Introduce

the following notation

ω+
i,j = ωi + ωj , δ+i,j = δi + δj ,

ω−
i,j = ωi − ωj , δ−i,j = δi − ωj ,

c̃ = −
r∑

i=1

c2iωiK sin(δi)

a2 + ω2
i

, c̃i =
2c0ciK sin( δi2 )

a
√
a2 + ω2

i

,

φ̃i = φi − δi
2
+ tan−1

(
a

ωi

)

c̃+i,j =

cicjω
−
i,jK sin

(
δ−i,j
2

)
√

(a2 + ω2
i )(a

2 + ω2
j )
,

φ̃+
i,j = φi + φj −

δ+i,j
2

+ tan−1

(
a2 − ωiωj

aω+
i,j

)

c̃−i,j = −
cicjω

+
i,jK sin

(
δ+i,j
2

)
√
(a2 + ω2

i )(a
2 + ω2

j )
,

φ̃−
i,j = φi − φj −

δ−i,j
2

+ tan−1

(
a2 + ωiωj

aω−
i,j

)
.

With the definitions above, the expression in (7) can be

represented in a more compact form as follows

ys(t, n) =c̃+
r∑

i=1

c̃i cos(ωit+ nδi + φ̃i)

+

r−1∑
i=1

r∑
j=i+1

(
c̃+i,j sin(ω

+
i,jt+ nδ+i,j + φ̃+

i,j)

+ c̃−i,j sin(ω
−
i,jt+ nδ−i,j + φ̃−

i,j)

)
, (8)

where r = 2. Equation (8) reveals the general structure of

the steady state response of the n-th EMD to a sinusoidal

grating with r distinct frequencies. The spatial excitation order

corresponds to the number of linearly independent functions

of n in (8), which quantity is easily seen to be at most 4
(
r
2

)
+

2r + 1 = 2r2 + 1.

From (2) and (8), the EMD-layer steady-state output is

yN,s(t) =c̃
N∑

n=1

gn +
N∑

n=1

r∑
i=1

gnc̃i cos
(
ωit+ nδi + φ̃i

)

+
N∑

n=1

r−1∑
i=1

r∑
j=i+1

gn

(
c̃+i,j sin

(
ω+
i,j + nδ−i,j + φ+

i,j

)

+ c̃−i,j sin
(
ω−
i,j + nδ−i,j + φ−

i,j

))
.

Similarly to the case of the single-tone sinusoidal grating

stimulus, the steady-state output vector is described in a matrix

form as Y = Ξγ, where

Ξ =c̃1(M+1)×N +
r∑

i=1

c̃i

(
f̃c,i ⊗ zc,i − f̃s,i ⊗ zs,i

)

+

r−1∑
i=1

r∑
j=i+1

(
c̃+i,j

(
f̃+
s,i,j ⊗ z+c,i,j + f̃+

c,i,j ⊗ z+s,i,j

)

+ c̃−i,j
(
f̃−
s,i,j ⊗ z−c,i,j + f̃−

c,i,j ⊗ z−s,i,j
))

,

with

f̃c,i=

⎡
⎢⎢⎢⎣

cos(φ̃i)

cos(ωiT + φ̃i)
...

cos(MωiT + φ̃i)

⎤
⎥⎥⎥⎦ , f̃s,i =

⎡
⎢⎢⎢⎣

sin(φ̃i)

sin(ωiT + φ̃i)
...

sin(MωiT + φ̃i)

⎤
⎥⎥⎥⎦ ,

f̃+
c,i,j=

⎡
⎢⎢⎢⎣

cos(φ̃+
i,j)

cos(ω+
i,jT + φ̃+

i,j)
...

cos(Mω+
i,jT + φ̃+

i,j)

⎤
⎥⎥⎥⎦, f̃+

s,i,j=

⎡
⎢⎢⎢⎣

sin(φ̃+
i,j)

sin(ω+
i,jT + φ̃+

i,j)
...

sin(Mω+
i,jT + φ̃+

i,j)

⎤
⎥⎥⎥⎦,

f̃−
c,i,j=

⎡
⎢⎢⎢⎣

cos(φ̃−
i,j)

cos(ω−
i,jT + φ̃−

i,j)
...

cos(Mω−
i,jT + φ̃−

i,j)

⎤
⎥⎥⎥⎦, f̃−

s,i,j=

⎡
⎢⎢⎢⎣

sin(φ̃−
i,j)

sin(ω−
i,jT + φ̃−

i,j)
...

sin(Mω−
i,jT + φ̃−

i,j)

⎤
⎥⎥⎥⎦,

zc,i =
[
cos(δi) cos(2δi) . . . cos(Nδi)

]T
,

zs,i =
[
sin(δi) sin(2δi) . . . sin(Nδi)

]T
,

z+c,i,j =
[
cos(δ+i,j) cos(2δ+i,j) . . . cos(Nδ+i,j)

]T
,

z+s,i,j =
[
sin(δ+i,j) sin(2δ+i,j) . . . sin(Nδ+i,j)

]T
,

z−c,i,j =
[
cos(δ−i,j) cos(2δ−i,j) . . . cos(Nδ−i,j)

]T
,

z−s,i,j =
[
sin(δ−i,j) sin(2δ−i,j) . . . sin(Nδ−i,j)

]T
.

III. INPUT DESIGN

In theory, it should be possible to generate a stimulus

that comprises an infinite number of sinusoidal gratings. This

is impossible to achieve in practice. The visual stimuli in

biological research can be implemented as dynamical images

on a cathode ray tube screen. The refresh rate of the screen

determines the upper bound of the frequencies of the sinusoids,

while the resolution and precision of the laboratory equipment
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would give the lower bound of the feasible frequency range.

Here, it is assumed for design purposes that the frequencies

are positive integer numbers.

Problem formulation

Given the feasible range for the stimulus frequency compo-

nents

D = [m,m],

where m and m stand for the minimum and maximum fre-

quencies, find a set of frequencies

ω = {ω1, . . . , ωr} ⊆ D

such that r is maximized and the number of distinct elements

in the set S given by

S = {ωk, ωk + ωl, ωk − ωl}, k, l ∈ {1, . . . , r}, k > l (9)

is exactly r2. Then the weights gi, i = 1, . . . , 2r2 + 1 can be

uniquely estimated from the measurements ys(t, n) obtained

by applying the sinusoidal grating with the frequencies in the

set ω.

Constructive method

As the set S in (9) is constructed from the frequencies in

ω, their pairwise differences and sums, a sensible solution is

to use the power basis 3k, that is for D = [0,m]

ω = {30, 31, . . . , 3r−1}, 3r−1 ≤ m.

From a number theory perspective, it is straightforward to

verify that the set above satisfies the conditions indicated in the

problem formulation. The number of excitation frequencies is

then given by r = 1+ �log3 m	 where �. . . 	 denotes the floor

operator. In addition, for the case when m �= 0, introduce the

notation

r = 
log3 m�, r = �log3 m	,
where the symbol 
. . . � denotes the ceiling operator. Then the

set ω is given by

ω = {3r, 3r+1, . . . , 3r}, 3r ≥ m, 3r ≤ m,

which leads to

r = 1 + r − r.

It should be noted that the constructive solution above is

prone to the curse of dimensionality, as the basis frequencies

grow exponentially with r, which property can be viewed as

a motivation for developing the algorithmic approach in the

following.

Iterative method

Another solution to the stimuli design problem can be

obtained through iteratively examining all integers in D and

discarding those that are overtones of a frequency in the set,

or those that result from pairwise summation and subtraction

of the frequencies. Below is one possible realization of such

an iterative method.

1) Initialize the frequency set ω as all integers in the given

interval D;

2) Set iteration counter k = 1, remove 2ω1 from the set ω;

3) Start iteration:

a) k = k + 1,

b) Construct the auxiliary sets:

S◦ = {ωl}, S+ = {ωk + ωl},
S− = {ωk − ωl}, l < k, ωk, ωl ∈ ω

c) Remove 2ωk, 2ωk+ωm, 2ωk−ωm, ωk+2ωm from

ω where ωm ∈ S◦,

d) Remove ωn, ωn + ωk from ω where ωn ∈ (S+ ∪
S−),

e) Continue iteration as long as k less than the dimen-

sion of ω.

The solution obtained from the iterative method above is not

necessarily the best one but it usually provides a better solution

than the constructive method, i.e. it produces the frequency set

ω with a larger dimension r.

Estimate repeating frequency components at the output side

In the biological experiments, the set of possible frequencies

for the stimulus is typically fixed. Hence, one might be

interested to see how many weights can be uniquely estimated

from a set of given frequency components.

The number of distinct frequency components of the EMD

layer output response to a stimulus whose components char-

acterized by ω can be obtained by computing the number of

unique elements in the following matrix

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎣

ω1 ω1 + ω2 ω1 + ω3 · · · ω1 + ωr

ω2 − ω1 ω2 ω2 + ω3 . . . ω2 + ωr

...
. . .

. . .
...

...
. . .

...

ωr − ω1 ωr − ω2 · · · · · · ωr

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The matrix Ω is made of three additive terms. The main

diagonal consists of the frequencies in ω, the upper triangular

part contains the sums of all pairs of frequencies in ω, and

the lower triangular part is comprised of pairwise differences

between the frequency components. A suitable representation

of the matrix is given by

Ω = ρ⊗ 11×r +U(1r×1 ⊗ ρT )− L(1r×1 ⊗ ρT ),

where ρ is a vector containing all the elements in the set ω,

while U(·) and L(·) represent projection operators extracting

the upper and lower triangular part of a matrix, respectively.

Consider the case where there are only ν unique compo-

nents in Ω, such that ν < r2, then the number of EMDs that

can be uniquely distinguished is N ≤ 2ν + 1.

Simulation example

Simulations were performed to show the improvement in

the EMD layer weights estimation with a higher number of

sinusoidal components in the multiple frequency gratings. The

layer is constructed from 50 individual EMDs with randomly

selected weight values. The EMDs are separated by 1◦. The

estimation is performed from 1000 samples measured at a
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sampling rate of 10 kHz. The estimated weights are computed

using the standard Matlab’s least squares solver. It is shown

in Fig. 2 that the correct estimation of weights is obtained

when at least 5 sinusoidal waves are included in the stimulus.

It is shown that the estimation error decreases with increasing

number of sinusoidal waves in the stimulus. The frequency set

for the stimulus used in the simulation is

ω = {8, 13, 19, 28, 42},
which results in

Ω =

⎡
⎢⎢⎢⎢⎣
8 21 27 36 50
5 13 32 41 55
11 6 19 47 61
20 15 9 28 70
34 29 23 14 42

⎤
⎥⎥⎥⎥⎦ .

Since all the elements in Ω are distinct, the set ω with r = 5
achieves the maximal excitation order and 2r2 + 1 = 51
weights can be correctly estimated from the frequency com-

ponents of the layer output.

Fig. 3 shows the performance of the estimation approach

on data corrupted by measurement disturbance. The simulated

disturbance is normal distributed white noise with zero mean

and variance of 0.1. It can be seen that the stimulus requires

a larger number of sinusoidal waves to yield good estimation

of the EMD-layer weight values.

IV. CONCLUSIONS

In order to devise an effective identification of a flat

EMD layer in biological vision systems, the spatial excitation

properties of sinusoidal gratings are investigated, and their

design is discussed. It is shown that the excitation of a single-

tone sinusoidal grating stimulus, a typical stimulus used in

motion vision research, cannot guarantee a unique solution for

more than three participating EMDs. Estimation of the EMD

weights in a realistic layer model requires input signals that

have much higher spatial excitation order. To overcome the

excitation deficiency, multiple sinusoidal grating stimuli can

be used. Two input design methods are proposed that produce

such stimuli of a given excitation order. Simulation results

show that with a higher number of sinusoids in the stimulus,

a more accurate estimation can be achieved.
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