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Abstract—Owing to the inherent sparsity of the target scene,
compressed sensing (CS) has been successfully employed in radar
applications. It is known that the performance of target scene
recovery in CS scenarios depends highly on the coherence of
the sensing matrix (CSM), which is determined by the radar
transmit waveform. In this paper, we propose efficient transmit
waveform optimization approaches for two different structures
of the radar waveform, namely, the single-pulse and the more
general pulse-train scenarios. By determining identical coherence
values associated with the sensing matrices of CS-based radars,
the suggested methods provide a considerable reduction in the
number of optimization variables. We show that, in the single-
pulse scenario, fast Fourier transform (FFT) operations can
be used to improve the computation speed, whereas, efficient
power method-like iterations may be employed in the pulse-
train scenarios. The effectiveness of the proposed algorithms is
illustrated through several numerical examples.

Index Terms—compressed sensing, mutual coherence, radar,
sensing matrix, sparsity, waveform synthesis

I. INTRODUCTION

Notation: We use bold lowercase letters for vectors and bold
uppercase letters for matrices. Please see Table I for other
notations used throughout this paper.

A primary interest in radar literature is the inverse problem
of recovering the target scene from noisy measurements. For a
radar working under the conventional Nyquist-Shannon sam-
pling framework, the sampling rate is constrained to be at least
twice the highest frequency component of the received signal
in order to facilitate an accurate reconstruction of the target
scene. However, in many cases, particularly for ultra wide band
(UWB) radar, such a requirement is hardly achieved using
the currently employed analog to digital converters (ADCs);
not to mention the large computational burden caused by the
processing of the data collected at high sampling rates.

The new framework of compressed sensing (CS) may
promise a solution to such difficulties [2], [3]. To observe
how, note that in practical radar applications, the target scene
is typically sparse—i.e. there is usually a small number of
targets that we are concerned with. In order to recover the
data with lower sampling rates, CS relies on two criteria: (i)
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TABLE I
NOTATIONS

x(k) the kth entry of the vector x

‖x‖n the ln-norm of x, defined as
(∑

k |x(k)|n
) 1
n

X∗ the complex conjugate of a matrix X
XT the transpose of a matrix X
XH the Hermitian transpose of a matrix X
‖X‖F the Frobenius norm of a matrix X
tr(X) the trace of a matrix X
vec(X) the vector obtained by column-wise stacking of X
diag(X) the column vector formed by the diagonal elements of X
λmin(X) the minimal eigenvalue of X
arg(X) the phase angle (in radians) of X
⊗ the Kronecker product
� the Hadamard product
0 an all-zero vector/matrix
1 an all-one vector/matrix
I the identity matrix
C the set of complex numbers

sparsity, which is related to the signal of interest (i.e. the target
scene), and (ii) incoherence, which is related to the sensing
modality to be designed.

In this paper, we consider a sparse modeling of target
scene in which the targets are located in different delay-
Doppler bins. A similar modeling was used in [5] and [6]
to lay the ground for introducing the concept of compressed
sensing radar (CSR). Extended CSR formulations for different
applications such as MIMO radar [7], [8], synthetic aperture
radar (SAR) [9], inverse synthetic aperture radar (ISAR) [10],
and cognitive radar (CR) [11] have been investigated. In
particular, it has been shown that, under the CSR framework,
CS techniques can be successfully applied in radar systems,
and can lead to lower sampling rates and higher resolution in
radar systems.

As a key component in radar system design, the transmit
waveform optimization for CSR has been considered recently,
see e.g. [11], [13]. The main goal in CSR transmit waveform
optimization is to reduce the coherence of an associated
sensing matrix (to be defined shortly), which is determined by
the radar transmit waveform. We note that transmit sequences
(s ∈ CN ) with low peak-to-average power ratio (PAR),

PAR(s) ,
‖s‖2∞
1
N ‖s‖

2
2

, (1)

are very desirable for transmission purposes due to lower
exposure of amplifiers to non-linear effects, as well as more
uniform distribution of power through time [14]. The mini-
mum PAR is achieved for unimodular sequences s, i.e. with
|s(k)| = 1 for all k. As a result, we focus on the design of
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unimodular transmit sequences throughout the paper. The main
contributions of this work can be summarized as follows:
• We begin our study with the single-pulse scenario which

is in fact the signal model used in [15] and [11] for
CSR waveform design. In this case, we propose an
efficient cyclic algorithm in order to optimize the transmit
waveform. This algorithm provides a reduction in the size
of the Gram matrix associated with the sensing matrix,
and relies on fast Fourier transform (FFT) operations to
improve the computation speed; see also [1].

• The more general case of probing pulse-train is also
considered. We show that the proposed algorithm for
single-pulse cannot be directly extended to handle the
pulse-train case. Thus, another waveform optimization
algorithm is proposed to deal with the arising design
problem. To the best of our knowledge, algorithms that
can deal with CSR waveform design in the pulse-train
scenario were not available prior to this work.

The rest of this paper is organized as follows. We discuss
the sparsity-aware radar system formulation in Section II.
Section III reviews the concept of mutual coherence, and its
useful properties as an interesting candidate for optimization
objective in radar waveform synthesis. The transmit waveform
synthesis approach for single-pulse scenario is proposed in
Section IV. Section V is devoted to waveform synthesis
for the more general case of multi-pulse radar transmission.
Simulation results are presented in Section VI.

II. SYSTEM MODELING

Consider a radar system transmitting a train of L ≥ 1
equally spaced pulses, with s(t) as the complex envelope of
the transmit signal at each pulse. Such a pulse-train signal
model can be formulated as

xT (t) =

L−1∑
l=0

s(t− lTr), 0 ≤ t ≤ LTr (2)

where Tr is the pulse-to-pulse delay or the pulse repetition
interval (PRI). We assume that s(t) is non-zero solely in a
time interval with size at most Tr. As mentioned earlier, we
deal with two different scenarios:
• The case of L = 1 represents a single-pulse scenario—a

basic radar signal model that has been considered in [15]
and [11].

• The case of L > 1 corresponds to a pulse-train scenario.
Pulse-train signals are usually employed in cases where
the targets are in the midst of a large clutter, or a more
accurate speed resolution is needed—see in particular, the
signaling techniques applied in the pulse Doppler (PD)
and moving target indication (MTI) radar [16].

We assume that the bandwidth B of s(t) is considerably
smaller than the carrier frequency fc (B � fc) used for
transmission. Moreover, we assume that the target scene is
composed of K non-fluctuating point targets from which the
transmit signal will be back-scattered to the receiver. The kth

target is characterized by three parameters: the time delay
τk = 2rk/c (with c denoting the wave propagation speed)
proportional to the distance rk from the radar system to

0

0

Nr-1

Nd -1

delay

Doppler

Fig. 1. The delay-Doppler plane of the target secene discretized into an
Nr ×Nd grid.

the target; the Doppler shift fk = 2vk/λ (with λ being
the wavelength of transmitted waveform) proportional to the
radial velocity vk of the target relative to the radar system;
and the reflection coefficient αk, proportional to the target’s
radar cross-section (RCS), dispersion attenuation and all other
propagation factors. Base on the above, the received signal can
be formulated as [17]

x(t) =

L−1∑
l=0

K∑
k=1

αks(t− τk − lTr)ej2πfkt + e(t) (3)

where e(t) accounts for the noise and all other unwanted
interferences. Note that for an unambiguous recovery of τk
(and equivalently, the target location information), the value
of Tr must be chosen such that Tr ≥ τk, for all k.

In order to achieve an amenable formulation for sparsity-
aware waveform design, in the sequel, we reformulate the
received signal in a discretized framework. Specifically, we
discretize the delay-Doppler plane of the target scene into
an Nr × Nd grid (similar to that proposed by [15]). Fig. 1
illustrates an example of such a discretized delay-Doppler
plane with K = 5 targets. We begin the discretization process
by further noting that the received signal x(t) in (3) may be
rewritten by separating the parts corresponding to fast-time
and slow-time coding Doppler shifts as

x(t) =

L−1∑
l=0

K∑
k=1

αks(t− τk − lTr)ej2πfk(t−lTr)ej2πfk(lTr)

+ e(t). (4)

Define the time delay T r, the fast-time F df and the slow-time
F ds Doppler shift matrices as

T r =

 0r×N
IN×N

0(Nr−r−1)×N

 , r = 0, 1, · · · , Nr − 1, (5)
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F df =


ω0
Nd

0 · · · 0
0 ω1

Nd
· · · 0

...
...

. . .
...

0 0 · · · ωN−1
Nd


d

,

d = 0, 1, · · · , Nd − 1, (6)

F ds =


ω

0Np
Nd

0 · · · 0

0 ω
1Np
Nd

· · · 0
...

...
. . .

...
0 0 · · · ω

(L−1)Np
Nd


d

,

d = 0, 1, · · · ,Nd − 1, (7)

where N is the length of discretized transmit signal by uniform
sampling with sampling period Ts, ωNd = e

j 2π
Nd denotes the

N th
d root-of-unity, Np , Tr/Ts, and (r, d) is a generic target’s

location in the grid. Therefore, the discrete received signal can
be written as

x =

Nd−1∑
d=0

Nr−1∑
r=0

αr,d diag(F ds)⊗ (T rF dfs) + e

=

Nd−1∑
d=0

Nr−1∑
r=0

αr,dϕr,d + e (8)

where s and e are the uniformly sampled versions of s(t) and
e(t) with sampling period Ts, ϕr,d , diag(F ds) ⊗ (T rF dfs),
and

αr,d =

{
αk, if the kth target is at (r, d),

0, otherwise.
(9)

Interestingly, one can rewrite (8) in the matrix form as

x = Φα+ e (10)

where Φ = (ϕ0,0,ϕ0,1, . . . ,ϕNr−1,Nd−1) and α =
(α0,0, α0,1, . . . , αNr−1,Nd−1)T . The goal of a radar system
is to estimate the location, speed, and the radar cross-section
(RCS) of the targets; in other words, to find the vector α in
the above equation. As discussed earlier, α in (10) is usually
sparse. Therefore, different methods from the CS literature can
be used for designing s (equivalently a low-coherence sensing
matrix Φ), as well as to seek for the sparse α in (10).

III. MUTUAL COHERENCE

CS techniques for handling linear formulations such as in
(10) require a low coherence of the sensing matrix Φ [2], [3],
[18], [19]. In a set of pioneer works, it was shown that the
CS-based recovery algorithms work with high probability if
a special condition, namely the restricted isometry property
(RIP) is satisfied [18]: RIP is defined with respect to an
isometry constant 0 < δ ≤ 1. For a K-sparse signal α and,
any non-negative integer σ ≤ K, the isometry constant of Φ
is the smallest δK ≥ 0 that satisfies

(1− δK)‖ασ‖22 ≤ ‖Φσασ‖22 ≤ (1 + δK)‖ασ‖22 (11)

where Φσ is a subset of σ columns arbitrarily extracted from
Φ, and ασ is the reflection coefficient vector corresponding to

the σ selected columns. The RIP condition then implies that
any σ subset of columns in Φ with cardinality less than K is
nearly orthogonal.

Due to the typically difficult nature of verifying RIP, other
measures of coherence were investigated in the literature. The
mutual coherence [20], also known as coherence of the sensing
matrix (CSM), is an alternative framework for measuring the
incoherence required by CS, which can be defined as

µ(Φ) = max
(r,d) 6=(r′,d′)

∣∣∣ϕHr,dϕr′,d′ ∣∣∣
‖ϕr,d‖2‖ϕr′,d′‖2

. (12)

An interesting property of mutual coherence is as follows [3]:
Suppose the sparsity order of an estimated target scene α̃
satisfies the inequality

‖α̃‖0 <
1

2

(
1 +

1

µ(Φ)

)
. (13)

Then α̃ is necessarily the sparsest solution of the linear
equation x = Φα. Moreover, fast greedy algorithms such
as the basis pursuit (BP) or the orthogonal matching pursuit
(OMP) are guaranteed to find the correct solution α [3].

A suitable approach to describe µ(Φ) is via the Gram matrix
G , Φ̃

H
Φ̃, where Φ̃ is the column-normalized version of Φ.

Consequently, µ(Φ) can be stated as

µ(Φ) = max
k 6=l

|G(k, l)| (14)

where {|G(k, l)|}k 6=l are the coherence coefficients associated
with the sensing matrix Φ.1 Note that a matrix Φ with low
coherence corresponds to a Gram matrix G which is close to
identity I . As a result, one can effectively reduce µ(Φ) by
solving the optimization problem:

min
Φ
‖G− I‖2F (15)

Although (15) might be easier to tackle compared to a di-
rect minimization of µ(Φ), a large number of variables can
still make the problem prohibitive. In the following sections,
we will discuss more effective approaches that formulate a
quadratic alternative of (15), and particularly in the scenario
of single-pulse, we show that FFT operations can be used to
improve the computation speed.

IV. SINGLE-PULSE (CORRESPONDING TO L = 1)

In this section, we devise an efficient algorithm for transmit
sequence design in the single-pulse case. Note that when
the number of pulses is limited to one, we have F s = 1,
and thus, the Doppler shifts are only due to the fast-time
component F f = F . In particular, the coherence between any
two arbitrary columns of the matrix Φ̃ (or equivalently the
corresponding element in the Gram matrix G) can be written

1We note that, according to the formulation in (8), the coherence coefficients
can also be associated with the transmit sequence s.
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as

ϕ̃Hr,dϕ̃r′,d′ =

(
1√
N
T rF ds

)H (
1√
N
T r

′
F d

′
s

)
=

1

N

(
sH
(
F d
)H

T r H
)(
T r

′
F d

′
s
)

=
1

N
sH
(
F d
)H

T̃∆rF
d′s (16)

where T̃∆r = T rHT r
′

is a square shifting matrix2 of size
N×N , and ∆r = r′−r. Using (16), the optimization problem
(15) can be equivalently written as

min
s

η (17)

s.t. |sn| = 1, n = 1, . . . , N.

where

η =

∥∥∥∥∥∥∥∥∥


G̃0 G̃1 · · · G̃Nr−1

G̃−1 G̃0 · · · G̃Nr−2

...
...

. . .
...

G̃1−Nr G̃2−Nr · · · G̃0

− I
∥∥∥∥∥∥∥∥∥

2

F

= Nr ‖G̃0 − I‖2F +
∑

0<|r|≤N−1

(Nr − |r|) ‖G̃r‖2F

=

N−1∑
r=−(N−1)

γ2
r ‖G̃r − Iδr‖2F (18)

and

G̃r = XH T̃ rX, (19)

X = (x0,x1, . . . ,xNd−1), (20)

xd =
1√
N
F ds , d = 0, 1, . . . , Nd − 1, (21)

γ2
r =

{
Nr − |r|, |r| < Nr,

0, otherwise,
(22)

and δr denotes the Kronecker delta function:

δr =

{
1, r = 0,

0, r 6= 0.
(23)

It is worth observing that, the summation in (18) paves the way
for a significant reduction in the dimension of the employed
matrix variables.

Next note that T̃ r is a shifting matrix, and hence G̃r

can be viewed as the covariance matrix of the vectors {xd}
corresponding to the time lag r. Based on this observation,
the following Parseval-type equality holds [21]:

‖G− I‖2F =

N−1∑
r=−(N−1)

γ2
r ‖G̃r − Iδr‖2F

=
1

2N

2N∑
p=1

∥∥∥∥Ψ(2πp

2N

)
− γ0I

∥∥∥∥2

F

(24)

2Note that, in contrast to {T r}, the shifting matrices
{
T̃∆r

}
perform the

shift operation in an N -length time frame, which implies that some parts of
the signal may be dropped.

in which

Ψ(ω) =

N−1∑
r=−(N−1)

γrX
H T̃ rX e−jωr (25)

represents the spectral density matrix of the (vector) sequence
[x0(r),x1(r), . . . ,xNd−1(r)]T .

Interestingly, the frequency domain criterion in (24) has the
same form as (28) in [21]. Therefore, we employ a similar
approach to tackle the problem herein. In particular, the Ψ(ω)
defined in (25) can also be written in the form

Ψ(ω) = ZH(ω)ΓZ(ω) (26)

with

Z(ω) = (z(1)e−jω, . . . ,z(N)e−jωN )T , (27)

z(n) = (x0(n), . . . ,xNd−1(n))T (28)

for 1 ≤ n ≤ N , and

Γ =


γ0 γ1 · · · γN−1

γ−1 γ0 · · ·
...

...
...

. . . γ1

γ−N+1 . . . γ−1 γ0

 . (29)

As a result, we have that

‖G− I‖2F =
1

2N

2N∑
p=1

∥∥∥ZHp ΓZp − γ0I
∥∥∥2

F
(30)

where Zp , Z(2πp/(2N)). Note that (30) is quartic with

respect to s. Observe that
∥∥∥G̃0 − I

∥∥∥2

F
is constant, and thus,

a diagonal loading of Γ does not change the solution to
(15). Let γ̃0 = γ0 + λ and Γ̃ = Γ + λI , with λ being
a non-negative scalar that ensures Γ̃ ≥ 0. Moreover, let C
represent the Hermitian square root of Γ̃, i.e. CHC = Γ̃.
An instrumental observation from the equivalence properties
of Hermitian square roots is that ZHp Γ̃Zp is close to scaled
identity γ̃0I , if and only if there exists a unitary matrix Up for
which CZp is close to

√
γ̃0Up; in particular, one pair of the

latter quantities achieves equality if and only if an equality is
attained for its counterpart. Consequently, one can reduce the
coherence of Φ conveniently using the following quadratic
alternative of (30):

min
s,Up

2N∑
p=1

∥∥∥CZp −√γ̃0Up

∥∥∥2

F

s.t. |sn| = 1, n = 1, . . . , N,

UH
p Up = I, p = 1, . . . , 2N. (31)

To tackle the minimization problem in (31), we adopt a
cyclic method as follows. For given {Zp}2Np=1 (equivalently a
given transmit sequence s), let

ZHp C
H = Up,1ΣU

H
p,2 (32)

represent the economy-size singular value decomposition
(SVD) of ZHp C

H , with Up,1 being an Nd×Nd unitary matrix,
Σ being an Nd × Nd diagonal matrix, and Up,2 being an
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N ×Nd semi-unitary matrix. Then the minimizer Up of (31)
is given by [21]

Up = Up,2U
H
p,1. (33)

Similar to the WeCAN algorithm in [21], the computation of
CZp can be performed using the FFT operations. To observe
how, let

X̃m = CT � (xm,xm, . . . ,xm)N×N (34)

for 0 ≤ m ≤ Nd − 1, and

F̂ =
√

2NAH F̃ , (35)

F̃ =

(
X̃0 . . . X̃Nd−1

0N×N . . . 0N×N

)
(36)

where A denotes the 2N × 2N (inverse) DFT matrix, whose
(l, p)-element is given by

[A]l,p =
1√
2N

ej2πlp/(2N), l, p = 1, . . . , 2N. (37)

Using the above formulations, one can observe that the N×Nd
matrixCZp may be obtained by reshaping the NNd×1 vector
fp into each column of CZp, where fTp represents the pth

row of F̂ .
Next we discuss the minimization of (31) with respect to s

for given {Up}2Np=1. Let

V 2N×NNd = (v1,v2, . . . ,v2N )T (38)

where vp =
√
γ0 vec(Up), 1 ≤ p ≤ 2N . Then the criterion

in (31) can be written as
2N∑
p=1

‖CZp −
√
γ0Up‖2F =

∥∥∥√2NAH F̃ − V
∥∥∥2

F

= 2N

∥∥∥∥F̃ − 1√
2N

AV

∥∥∥∥2

F

. (39)

Note that (39) can be minimized with respect to each element
of s in a separate manner. Particularly, we can consider
minimizing the following criterion with respect to s (i.e. a
generic element of s):

NNd∑
k=1

|µks− νk|2 = H − 2<

[(
NNd∑
k=1

µ∗kνk

)
s∗

]
(40)

where {µk} are given by the elements of F̃ that contain s,
νk is given by the element of 1√

2N
AV whose position is the

same as that of µk in F̃ , and

H =

NNd∑
k=1

|µks|2 +

NNd∑
k=1

|νk|2

=

NNd∑
k=1

|µk|2 +

NNd∑
k=1

|νk|2 (41)

is a constant. Therefore, the unimodular s minimizing (40) can
be obtained as

s = ejϕ,

ϕ = arg

(
NNd∑
k=1

µ∗kνk

)
. (42)

TABLE II
THE ALGORITHM FOR SPARSITY-AWARE TRANSMIT SEQUENCE DESIGN

(SINGLE-PULSE CASE)

Step 0: Initialize the transmit sequence s with a random unimodular
sequence (or by a good existing sequence). Calculate the Hermitian
square root C of Γ̃.
Step 1: Fix s (equivalently {Zp}2Np=1) and compute {Up}2Np=1 using
(33).
Step 2: Fix {Up}2Np=1 and compute s using (42).
Step 3: Repeat steps 1 and 2 until a stop criterion is satisfied, e.g.
‖s(t+1) − s(t)‖F < ε for some given ε > 0, where t denotes the
total iteration number.

Finally, the steps of the proposed algorithm for designing
the transmit sequence s are summarized in Table II. From
a complexity viewpoint, the suggested algorithm relies on a
one-time computation of C with an O(N3) cost. At each
iteration, the proposed method requires 2NNd computation
of 2N -point (I)FFTs, as well as 2N computations of the SVD
of an Nd ×N matrix. Owing to efficient FFT operations, the
method appears to be considerably less expensive than the
matrix-based method in [11] as the transmit sequence length
N grows large—see [1] for a numerical comparison.

V. PULSE-TRAIN (CORRESPONDING TO L > 1)
In this section, we will consider the design of radar transmit

waveform in pulse-train scenario with L > 1. One can
easily observe that if L > 1, the slow-time Doppler shift
matrix F ds is no longer identical/constant for different Doppler
shifts d. Thus, the simplifying formulations associated with
single-pulse scenario cannot be directly extended to the pulse-
train case. Additionally, we note that although the pulse-train
formulation below is also valid for L = 1, it does not present
a similar potential for using FFT operations—instead, we
achieve a general framework based on unimodular quadratic
programs (UQPs) and resort to a fast approach to handle such
optimization problems.

To begin describing the design methodology, we note that
the coherence between any two arbitrary columns of the matrix
Φ̃ (and equivalently the corresponding element in the Gram
matrix G) can be written as

ϕ̃Hr,dϕ̃r′,d′ =

[
1√
LN

diag(F ds)⊗ (T rF dfs)

]H
×
[

1√
LN

diag(F d
′

s )⊗ (T r
′
F d

′

f s)

]
=

1

LN

[(
diag(F ds)

)H
⊗
(
sH
(
F df

)H
(T r)

H

)]
×
[
diag(F d

′

s )⊗ (T r
′
F d

′

f s)
]

=
1

LN
tr
(
F∆d
s

)[
sH
(
F df

)H
T∆rF d

′

f s

]
=

1

LN

L−1∑
l=0

Nu∑
n=Nl

s∗nsn−∆re
j 2π
M (Npl+n)∆d

× e−j 2π
M ∆rd′ (43)

where T̃∆r = T rHT r
′
, ∆r = r′ − r, ∆d = d′ − d, Nl =

max{1, 1 + ∆r} and Nu = min{N,N + ∆r}. Based on the
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above equation, it is easy to verify that the absolute values
of ϕ̃Hr,dϕ̃r′,d′ , with the same ∆r and ∆d are all identical. As
a result, the Gram matrix G has a specific structure that can
be exploited; specifically, with a change of variables, one can
write an element of G (associated with a range shift index r
and Doppler shift index d) as

g(r, d) =
1

LN

L−1∑
l=0

Nu∑
n=Nl

s∗nsn−re
j 2π
M (Npl+n)d

=
1

LN
tr
(
F ds

)(
sH
(
F df

)H
T̃ rs

)
= sHQr,ds (44)

where

Qr,d =
(

tr
(
F ds

)
/LN

) (
F df

)H
T̃ r. (45)

Therefore, by using (43) and (44), we can consider the
following optimization problem instead of (15) for coherence
reduction:

min
s

ζ

s.t. |sn| = 1, n = 1, . . . , N. (46)

where

ζ =

Nr−1∑
r=0

Nd−1∑
d=−(Nd−1)
(r,d)6=(0,0)

|g(r, d)|2

=

Nr−1∑
r=0

Nd−1∑
d=−(Nd−1)
(r,d)6=(0,0)

|sHQr,ds|2 (47)

and g(−r, d) = g∗(r,−d) due to (44). It is worthwhile to
make a remark similar to the single-pulse case herein, i.e., in
light of the observation below (43), (46) leads to a significant
reduction in the number of coherence terms one should try to
make smaller via the waveform design.

To tackle the optimization problem proposed in (46), we
first let

Q̃r,d =
1

2

(
Qr,d +QH

r,d

)
(48)

Q̂r,d =
1

2

(
Qr,d −Q

H
r,d

)
(49)

where Q̃r,d and Q̂r,d are Hermitian and skew-Hermitian
matrices respectively. The latter transformation of variables
ensures that{

sHQ̃r,ds → is real-valued,
sHQ̂r,ds → is imaginary.

(50)

It follows from (50) that∣∣sHQr,ds
∣∣2 =

∣∣∣sH(Q̃r,d + Q̂r,d)s
∣∣∣2

=
∣∣∣sHQ̃r,ds

∣∣∣2 +
∣∣∣sHQ̂r,ds

∣∣∣2
=
∣∣∣sHQ̃r,ds

∣∣∣2 +
∣∣∣sHjQ̂r,ds

∣∣∣2 (51)

where j =
√
−1 and jQ̂r,d is a Hermitian matrix. It follows

from (51) that the objective function ζ can be rewritten as

ζ =

Nr−1∑
r=0

Nd−1∑
d=−(Nd−1)
(r,d)6=(0,0)

{ ∣∣∣sHQ̃r,ds
∣∣∣2 +

∣∣∣sHjQ̂r,ds
∣∣∣2}

=

Nr−1∑
r=0

Nd−1∑
d=−(Nd−1)
(r,d)6=(0,0)

{ ∣∣∣sH(Q̃r,d + λI)s− λN
∣∣∣2

+
∣∣∣sH(jQ̂r,d + λI)s− λN

∣∣∣2}
=

Nr−1∑
r=0

Nd−1∑
d=−(Nd−1)
(r,d)6=(0,0)

{ ∣∣∣sHQ̃′r,ds− λN ∣∣∣2

+
∣∣∣sHQ̂′r,ds− λN ∣∣∣2} (52)

where Q̃′r,d = Q̃r,d + λI , Q̂′r,d = jQ̂r,d + λI , and where
λ ∈ R is chosen such that

λ > −min

⋃
r,d

{
λmin

(
Q̃′r,d

)
, λmin

(
Q̂′r,d

)} (53)

to ensure the positive-definiteness of
{
Q̃′r,d

}
and

{
Q̂′r,d

}
.

Now observe that the criterion in (52) is a quartic function
with respect to s, which is in fact difficult to minimize.
However, similar to the proposed transition from (30) to (31),
we can derive a quadratic alternative to (52): for any generic
positive-definite matrix Q, the quantity sHQs is close to λN
if and only if the l2-norm of Rs is close to

√
λN , where

R denotes the Hermitian square root of Q, i.e. Q = RHR.
Equivalently, sHQs is close to λN if and only if there exists
a unit-norm vector u such that Rs is close to

√
λNu. As

a result, (52) can be made small conveniently by tackling
the following alternative quadratic optimization problem [21]–
[24]:

min
s,{ũr,d},{ûr,d}

ζ

s.t. |sn| = 1, n = 1, . . . , N,

‖ũr,d‖2 = ‖ûr,d‖2 = 1, (54)

where

ζ =

Nr−1∑
r=0

Nd−1∑
d=−(Nd−1)
(r,d) 6=(0,0)

{∥∥∥R̃r,ds−
√
λN ũr,d

∥∥∥2

+
∥∥∥R̂r,ds−

√
λN ûr,d

∥∥∥2
}
, (55)

and R̃r,d, R̂r,d are the Hermitian square roots of Q̃′r,d, Q̂′r,d,

respectively, i.e. Q̃′r,d = R̃
H

r,dR̃r,d, Q̂′r,d = R̂
H

r,dR̂r,d. To
tackle the minimization problem in (54), we adopt a cyclic
method as follows. For given s, the minimization of (54) with
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respect to {ũr,d} and {ûr,d} is immediate:

ũr,d =
R̃r,ds

‖R̃r,ds‖2
, (56)

ûr,d =
R̂r,ds

‖R̂r,ds‖2
. (57)

Next, for given {ũr,d} and {ûr,d}, the objective of (54) can
be reformulated as

ζ =

Nr−1∑
r=0

Nd−1∑
d=−(Nd−1)
(r,d)6=(0,0)

{∥∥∥R̃r,ds−
√
λN ũr,d

∥∥∥2

+
∥∥∥R̂r,ds−

√
λN ûr,d

∥∥∥2
}

=

Nr−1∑
r=0

Nd−1∑
d=−(Nd−1)
(r,d)6=(0,0)

{
sH
(
R̃
H

r,dR̃r,d + R̂
H

r,dR̂r,d

)
s

− 2
√
λN <

{
sH
(
R̃
H

r,dũr,d + R̂
H

r,dûr,d

)}}
+ const.

=sHRs+ 2<{sHu}+ const. (58)

where

R =

Nr−1∑
r=0

Nd−1∑
d=−(Nd−1)
(r,d)6=(0,0)

(
R̃
H

r,dR̃r,d + R̂
H

r,dR̂r,d

)
(59)

=

Nr−1∑
r=0

Nd−1∑
d=−(Nd−1)
(r,d)6=(0,0)

(
Q̃′r,d + Q̂′r,d

)
,

u = −
√
λN

Nr−1∑
r=0

Nd−1∑
d=−(Nd−1)
(r,d)6=(0,0)

(
R̃
H

r,dũr,d + R̂
H

r,dûr,d

)
.

Now by dropping the constant part in (58), we obtain the
following objective function:

sHRs+ 2<(sHu)

=

(
s
1

)H (
R u
uH 0

)(
s
1

)
= s̃HCs̃ (60)

Therefore, the minimization of (54) with respect to s is
equivalent to

min
s

s̃HCs̃ (61)

s.t. |sn| = 1, n = 1, . . . , N ;

s̃ =

(
s
1

)
.

As a result of the unimodular constraint, s̃ has a fixed l2-
norm, and hence, a diagonal loading of C does not change
the solution to (61). Thus, (61) can be written in the following

TABLE III
THE ALGORITHM FOR SPARSITY-AWARE TRANSMIT SEQUENCE DESIGN

(PULSE-TRAIN CASE)

Step 0: Set the s to some initial values (e.g., s can be randomly generated
or given by a good existing sequence) and calculate the matrices Q̃r,d

and Q̂r,d. using (48) and (49).
Step 1: Compute ũr,d and ûr,d using (56) and (57) for s fixed.
Step 2: Use the power method-like iterations in (63) (until convergence)
to obtain s.
Step 3: Repeat steps 1 and 2 until a stop criterion is satisfied, e.g.
‖s(i+1) − s(i)‖F < ε for some given ε > 0, where i denotes the
total iteration number.

equivalent form:

max
s

s̃HC̃s̃ (62)

s.t. |sn| = 1, n = 1, . . . , N ;

s̃ =

(
s
1

)
;

where C̃ = λ′I −C, with λ′ being larger than the maximum
eigenvalue of C. The maximization problem (62) is in fact a
UQP [25], and can be tackled efficiently by the power method-
like iterations originally proposed in [25], [26], viz.

s(t+1) = exp

{
j arg

((
IN×N
01×N

)T
C̃s̃(t)

)}
(63)

where the iterations can be initialized with the latest design of
s (used as s(0)) and t denotes the internal iteration number.
Finally, the steps of the proposed algorithm for designing the
transmit signal s is summarized in Table III. As to the com-
putational cost, the suggested algorithm relies on a one-time
computation of the matrices matrices Q̃r,d and Q̂r,d and their
Cholesky decomposition with an O(NrNd(L + N2 + N3))
cost. Then, at each iteration, the proposed method requires
simple matrix multiplications with O(N2η) cost where η
denotes the number of employed power method-like iterations.

Remark on Optimality: The optimization problems emerging
from coherence reduction scenarios are often multimodal (i.e.
they have many local optima); see e.g. [22], [27]–[30]. Given
the non-convex nature of the design, one usually settles for
approximation algorithms with the goal of finding the local
optima of the problem. However, it is interesting to note
that similar formulations to ones in this paper have been
successful in approaching the fundamental limits of coherence
(such as the Welch bounds on peak and integrated coherence
level) [31]–[33]—which presumably is due to the commonly
observed property that the optimization landscape in coherence
reduction may, in fact, contain many global optima, or many
local optima whose coherence is pretty close to the global
optimum from a practical viewpoint [31], [34]. �

VI. SIMULATION RESULTS

Hereafter, we investigate the performance of the proposed
approaches in comparison to well-established alternative trans-
mit waveforms available in the literature. We consider employ-
ing the proposed methods to design a transmit sequence s of
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length N = 127, using the Alltop sequence as initialization,
for a target scene with Nr = 20 range and Nd = 15
Doppler bins. The Alltop sequence is known to yield a good
incoherence property of the sensing matrix Φ [15], and is
defined for prime lengths N > 5 as

sAlltop(n) = ej
2π
N n3

, n = 1, 2, . . . , N. (64)

In addition to the Alltop sequence, we also use the random
phase sequence (ejθn , {θn} are independent random variables
uniformly distributed in [0, 2π]) and the m-sequence [35], [36]
for comparison. The root mean-square error (RMSE) of target
scene recovery, i.e. the recovery of α, is defined as ‖α̃ −
α‖2 where α̃ denotes the recovered target scene. We stop the
optimization algorithms whenever the l2-norm of change in
the designed signal becomes smaller than ε = 10−3.

A. Single-pulse

1) Incoherence: We first compare the coherence coeffi-
cients in single-pulse scenario associated with the random
phase sequence, m-sequence, Alltop sequence and the opti-
mized sequence obtained by the proposed method. The results
are shown in Fig. 2. It can be observed from Fig. 2 that
although the maximum coherence values for all the sequences
are the same, the coherence values corresponding to the
optimized sequence are in general considerably lower than the
other three sequences considered in this example.

2) Target Scene Recovery: In order to verify the effective-
ness of the optimized sequences, we examine the success rate
and RMSE of the target scene recovery for different signal-
to-noise ratio (SNR) values. We construct the sparse vectors
α by choosing K = 30 non-zero locations in the vector, with
identical chance for all

(
NdNr
K

)
assignments of the non-zero

locations, and consider random positive RCS values for the
non-zero locations. We use OMP as the recovery algorithm and
consider a target scene recovery successful if and only if all
the non-zero locations of the estimated sparse vector α̃ are the
same as those of the true targets scene α. Fig. 3 presents the
recovery results. In this case, it is interesting to observe that,
except for the optimized sequence, the other three sequences
can not recover all of the target scenes correctly even for large
SNR values (the success rate is less than one).

It can be also interesting to see how the sparsity order
K = ‖α‖0 affects the recovery performance. To this end,
Fig. 4 shows the recovery success rates and RMSEs for differ-
ent sparsity orders K of the target scene with SNR= 0dB. The
results leading to Fig. 3 and Fig. 4 are obtained by averaging
over the simulation results from 500 Monte Carlo experiments
(with different random initializations).

B. Pulse-train

1) Incoherence: Similar to the previous case, we compare
the coherence coefficients of random phase sequence, m-
sequence, Alltop sequence and the optimized sequence ob-
tained by the proposed method in pulse-train scenario. We
set the number of active pulses to L = 10. The results are
shown in Fig. 5. It can be observed from Fig. 5 that the
optimized sequence outperforms the other three sequences in

terms of incoherence. It is interesting to note that, in light
of the recovery condition in (13), a smaller mutual coherence
associated with the optimized sequence guarantees the ability
of the radar system to recover target scenes with larger number
of targets (i.e. with larger K).

We further note that, compared to Fig. 2, the coherence
coefficients associated with all sequences in the pulse-train
scenario are considerably smaller than those in the single-pulse
case. Such an expected outcome leads to better recovery results
in the pulse-train scenario; see below.

2) Target Scene Recovery: As shown in Fig. 5, the se-
quences working in pulse-train scenario have good coherence
features. Thus, as discussed earlier, the sequence can be
applied to more severe situations (specially with low SNR
or large sparsity order K). Fig. 6 demonstrates the recovery
results for different SNR values, with L = 10 and K = 90.
According to Fig. 6, satisfactory recovery results can be
achieved even for low SNR and large sparsity order conditions
by employing the sequence obtained by the proposed method.
The results leading to Fig. 6 are obtained by averaging the
simulation results for 500 Monte Carlo experiments (with
different random initializations). Similar to the previous case,
OMP is employed as the recovery algorithm.

VII. CONCLUSION

We presented a modeling of the radar system and particu-
larly the transmit waveforms in the sparsity-aware scenarios.
Depending on the structure of transmit waveforms, namely
the single-pulse and pulse-train cases, efficient waveform
optimization algorithms were proposed for a judicious design
of the radar signals. It was shown that optimizing the radar
transmit waveforms leads to smaller coherence coefficients and
better recovery results than not only random sequences but also
other sequences known for their good measurement properties.
Note that, although pulse-train waveforms are longer and more
costly for transmission than their single-pulse counterparts,
they usually lead to better target scence recovery. Interestingly,
for the CS-based radar system, it was confirmed from the sim-
ulation results that using pulse-train signals is advantageous in
terms of recovery performance—a coherent observation with
that typically made in traditional radar systems.
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Fig. 5. Distribution of the coherence coefficients in pulse-train scenario; associated with (a) random phase sequence, (b) m-sequence, (c) Alltop sequence
and (d) the optimized sequence obtained by the proposed method using the Alltop sequence as initialization, respectively.
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Fig. 6. The recovery results in pulse-train scenario for different values of SNR: (a) success rate, (b) RMSE.


