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ABSTRACT
Restoration of shredded signals remains a relevant and sig-
nificant challenge in archaeological and forensic efforts. In
this work, we present a novel approach for reconstruction
of shredded signals (including text documents and images)
within a context of general multidimensional sparse signals.
To this end, we present a generic efficient non-convex opti-
mization method that employs iterative sparsity enhancement
of the observed signal. A key component of the design fol-
lows from the observation that most natural signals are sparse
in a given representation domain. Computational results por-
trait the potential of our suggested method in several practical
cases of signal reconstruction.

Index Terms— Non-convex optimization, signal recon-
struction, sparsity, strip-shredded documents.

1. INTRODUCTION

In the past few years, there has been a growing interest in
the field of document analysis (see, e.g. [1–5]). Recovering
lost information by reconstruction of shredded documents is
one of the important and interesting fields of research with
significant applications in forensic and investigative sciences.
Shredding of documents is often practiced to destroy poten-
tially incriminating evidences, and it can be essential to the
investigating authorities to recover the lost documents. There
also exists a great level of interest in such research prob-
lems by archaeologists in reassembling historical documents
as well as putting together clay or other form of fragments
containing ancient texts and paintings.

The documents are typically shredded efficiently by using
mechanical shredding devices producing thin strips (often
termed as “spaghetti” as depicted in Fig. 1), smaller rectan-
gular pieces, or even some other complex geometrical shapes
such as circular fragments (named as “confetti”) or hexagons.
However, the problem of shredded document recovery re-
quires enormous amount of time and effort when done man-
ually, essentially fabricating an extended jigsaw puzzle, with
the added difficulty of all pieces being identical in shape and
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Fig. 1. Rectangular strip-shredded Sumerian inscription:
(a) original and (b) “spaghetti” fragments.

size. Therefore there is a conspicuous motivation to automate
the process as much as possible, with the potential to increase
both accuracy and speed of reconstruction.

In some recent efforts, the problem of reconstruction of
shredded documents has been regarded as a particular case
of jigsaw puzzle. Interestingly, a number of computer vision
methods for the solution of jigsaw puzzles have been pro-
posed since 1963 [6–9]. Moreover, for the computer-based
reconstruction of two-and three-dimensional fragmented ob-
jects, jigsaw puzzle-based approaches have been espoused
in the research of archeology and historical art conservation
[10–12]. In the literature, on one hand, much of the solu-
tions proposed for restoration of jigsaw puzzles, are based
on a model for the piece contour shape and this problem is
titled as “apictorial jigsaw puzzle” [6]. On the other hand,
in some other contributions, the research on the assembly of
fragmented pieces has considered the fact that a human being
does not only consider just the information on the piece con-
tour or shape, rather also tries to find the optimum matching
pieces with respect to their contents, color or texture appear-
ance (see [13–20] and the references therein). Nonetheless,
the practical problem of shredded signal reconstruction re-
mains particularly difficult (if not impossible) to solve in a
reasonable time when the dimensions grow large, and hence,
efficient optimization approaches are crucial to make such
tasks viable.



Table 1. Notations

Notation Description

xk the kth entry of the vector x

xT the transpose of the vector x

xH the conjugate transpose of the vector x

‖x‖p the lp-norm of x, defined as (
∑
k |x(k)|p)

1
p

IN the identity matrix for order N

R the set of real numbers

C the set of complex numbers

1 the unit column matrix with all elements as 1

⊗ the Kronecker product

� the Hadamard product

In this paper, we devise an efficient non-convex optimiza-
tion approach for the reconstruction of shredded signal (be
it an image or audio signal, one or multi-dimensional). The
proposed approach relies on the fact that most natural signals
we deal with are sparse in given representation domains. The
suggested method can be categorized as an alternate mini-
mization technique, where the optimization is carried out with
some variables held fixed and in a cyclic manner [21, 22].

The rest of the paper is organized as follows. The non-
convex problem formulation is presented in Section 2, while
Section 3 describes the reconstruction approach. Section 4
describes how our method can be extended to handle multi-
dimensional signals, and images in particular. Section 5 is
dedicated to the numerical results and relevant discussions.
Finally, Section 6 concludes the paper.

Notation: We use bold lowercase letters for vectors and
bold uppercase letters for matrices. The reader may refer Ta-
ble 1 for other notations used throughout this paper.

2. PROBLEM FORMULATION

We begin our study with signals lying in a one-dimensional
space. Our goal is to reconstruct a finite-length discrete-time
signal denoted by x ∈ CMN , whereM andN are the number
of shredded parts and the length of each part, respectively. We
represent the shredded signal y as

y =
(
yT1 yT2 · · · yTM

)T
.

Similar to the original signalx, the shredded signal y contains
M partitions with each partition having a length of N . Note
that, for convenience in formulation, we have assumed that all
signal partitions (or the shredded parts) are of the same size,
namely xm,ym ∈ CN .

Moreover, we assume that the original signal x is sparse
in a given representation domain [23, 24]. Note that this is a

practical assumption for many natural signals including im-
ages, text documents, and audio. In the following, we con-
sider to deal with the Discrete Fourier Transform (DFT) do-
main sparsity although the main idea is general. The order of
sparsity may be unknown.

It is well-known that any signal in CN can be repre-
sented in terms of its orthonormal Fourier basis denoted as
{ψm}MN

m=1, forming the MN × MN basis matrix Ψ :=
[ψ1|ψ2| · · · |ψMN ]. Let v ∈ CM×N denote the represen-
tation of x in the DFT domain, i.e. the signal x can be
expressed as,

x = ΨHv (1)

where v is an MN × 1 column vector of DFT coefficients.
The DFT matrix Ψ is given by

[Ψ]l,p =
1√
MN

exp

{
j2πlp

MN

}
, l, p = 1, 2, · · · ,MN.

LetXs be the set of all vectors with at most s non-zero values.
The sparsity assumption thus implies that v belongs to Xs for
some s�MN .

Next note that the desired signal partitions {xm} can be
obtained via a permutation of {ym} through (to be deter-
mined) permutation matrix P ∈ RM×M , viz.

x = (P ⊗ IN )y. (2)

Consequently, from (1) and (2) it is evident that in order to
find x, one may solve the following optimization problem,

min
P ,v

∥∥(P ⊗ IN )y −ΨHv
∥∥
2

(3)

s.t. P is a permutation matrix of size M,

v ∈ Xs,
‖v‖2 = ‖y‖2,

while s remains unknown.

3. THE RECONSTRUCTION APPROACH

In the following, we propose an efficient method to tackle (3).
Our approach relies on the following key observations:

• Observation 1:
In a case where the sparsity order s is given, the opti-

mization problem in (3) can be tackled rather efficiently using
cyclic minimization— as discussed below.
For fixed P : One only needs to tackle the nearest-vector
problem to find the optimal v:

min
v

‖v −Ψ(P ⊗ IN )y‖2 (4)

s.t. v ∈ Xs,
‖v‖2 = ‖y‖2.



To solve the above problem, let ṽ , Ψ(P ⊗ IN )y, and
note that for the optimal v, arg (v) = arg (ṽ). Therefore,
we can exclude the phase variables from the analysis in the
complex-valued case and solely compute the absolute values
of the entries of v. As a result, without any loss of generality,
we can assume that both v and ṽ are real-valued and non-
negative. It may be observed that,

‖v − ṽ‖22 = c− 2vT ṽ (5)

where c = ‖v‖22 + ‖ṽ‖22 = 2‖y‖22 is constant. According to
the theorem by Hardy, Littlewood and Pólya [25], the inner
product of v and ṽ (i.e. vT ṽ) can be maximal if and only if
the elements of v are sorted in the same order of magnitude
as in ṽ [26, 27]. Consider the s entries of ṽ with maximum
absolute values and let µµµ be a binary vector showing their
support. The optimal v of (4) is thus simply given as

vopt = ‖y‖2
(

ṽ �µµµ
‖ṽ �µµµ‖2

)
. (6)

Furthermore, note that ṽ can be computed very efficiently
usig Fast Fourier Transform (FFT) operations, leading to a
low-cost computation of vopt.
For fixed v: One may simplify (3) as,

min
P

M∑
m=1

N∑
l=1

∣∣∣∣∣
M∑
k=1

pm,k · yk,l − v̂m,l

∣∣∣∣∣
2

(7)

where pm,k is the entry in mth row and kth column in per-
mutation matrix P and yk,l is the lth entry in kth partition in
observed signal y and also v̂ , {v̂m,l}M,N

m=1,l=1 = ΨHv. As
P only consists of {0, 1} values, we have that

M∑
k=1

pm,k · yk,l = yπm
,

m = 1, 2, · · · ,M,

l = 1, 2, · · · , N,

where πm is the only column in mth row of matrix (P ⊗ IN )
where the respective entry is 1. Hence, the optimization prob-
lem in (7) can simply be written as,

min
{πm}

MN∑
m=1

|yπm − v̂m|
2 (8)

As a result, to find the optimal permutation matrix P =
Popt of (3), instead of minimizing (8) with respect to all πm,
we may consider finding an M -sized subset that covers all
the partitions and also has the lowest cost. To accomplish the
mentioned task, we build a matrix U of size M × M such
that,

Uk,l , ‖yk − v̂l‖22, (9)
k, l = 1, 2, · · · ,M

Table 2. Algorithm for Shredded Signal Reconstruction

Step 0: Set s = 1.

Step 1: Monotonically decrease the objective of (3) via

cyclic minimization until convergence using (6) and (10).

Step 2: Set s← s+ 1.

Step 3: Repeat Step 1 until the decrease in the objective

of (3) is negligible.

where each partition of yk and v̂l has size N × 1 and k and l
denotes the respective row and column in U . The minimiza-
tion problem for finding the optimal permutation matrix Popt
can be recast as

Popt = argmin
P

[
1T (P �U)1

]
(10)

where U is the associated cost matrix. Note that the above
problem is in fact an Assignment Problem that can be solved
efficiently using the Hungarian Algorithm [28] with an
O(M2) computational cost.

• Observation 2:
Another key observation is the inclusion

X1 ⊂ X2 ⊂ X3 ⊂ · · · (11)

which implies that, while by increasing s we expand the
search space of v, we can always use the appropriate values
of v obtained for a smaller s to search for an updated v as we
increase s.

• The Approach:
In light of the above, one can use the sparsity enhance-

ment procedure summarized in Table 2 to reconstruct the
shredded signal. Note that both steps 1 and 2 in the proposed
algorithm can only decrease the criterion in (3). This guaran-
tees the convergence of the algorithm, given the fact that the
objective of (3) is lower bounded at zero.

4. EXTENSIONS OF THE RECONSTRUCTION
ALGORITHM: THE TWO-DIMENSIONAL CASE

We note that the shredded pieces may not all be of same
length or even not be rectangular in shape and rather have
random contours. As the approach discussed above relies on
the sparsity of the signals, it can also be modified to handle
shredded signal cases where the partitions are uneven or have
dissimilar shapes. Among possible extensions of the central
ideas presented in this paper, an extension of the methodol-
ogy to higher dimensional cases is of the most significant
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Fig. 2. Reconstruction results: (a) original images, (b) scram-
bled shredded strips, (c) reconstructed images.

interest—particularly, the 2D case where shredded images
and documents can be restored.

Consider a real-valued 2D signal X as the signal of size
R×C (to be reconstructed), and similarly, the shredded signal
Y of the same size, having M vertical shredded strips each
of equal size. For the ease of formulation, let X and Y de-
note the matrices which are built from the shredded X and
Y respectively. X and Y both have size C × R. Moreover,
ΨH
CVΨH

R denotes the 2D IDFT representation of the signal
X where ΨK is the normalized DFT matrix of size K ×K
where K ∈ {R,C}. It can easily be shown that the opti-
mization problem in (3) can be extended to two-dimension in
rather similar straightforward manner, such that ,

min
P ,V

∥∥(P ⊗ IN )Y −ΨH
CVΨH

R

∥∥
2

(12)

and can be optimized in a similar way using (6) and (10).

5. EXPERIMENTAL RESULTS

In this section, we present the computational and experimen-
tal results including a description of the experimental setups.
The proposed non-convex reconstruction approach has been
tested on several two-dimensional image signals which are
known to be sparse in DFT domain. As benchmark instances
we have used several standard texts and gray scale images of
size 512 × 512 for this purpose. The shredded instances are
generated by virtually cutting the document pages vertically
into 16 shreds producing 512 × 32 strips and then the strips
are indexed by their original order: 0, 1, · · · , 15. Example
instances of text and image samples and their scrambled ver-
sions can be viewed in Fig. 2(a)-(b).

Fig. 2(c) shows the final reconstruction results after the
convergence is reached according to the objective minimiza-
tion function in (12). It can be seen from the images that all
the strips matched exactly with their original indices. Based
on the order of sparsity for each instance, on average the op-
timum matching of the 16 shredded strips was achieved after
12-17 iterations and it took only 0.105-0.368 seconds to reach
the convergence on a standard PC—a much faster record com-
pared to what one can observe for generic contour and feature
based shredded image reconstruction algorithms.

6. CONCLUSIONS AND FUTURE WORK

In this work, we presented a novel non-convex approach to
find the best matching of strip-shredded document. This hy-
brid approach is based on the enhancement of sparsity of the
observed signal. The algorithm was tested on several shred-
ded document pages and images and the results obtained sug-
gest that the proposed algorithm demonstrates a great effi-
ciency in reconstructing the shredded signals in terms of the
reconstruction rate and computational time. While the numer-
ical results showed that a complete reconstruction was attain-
able for our specific examples, as a future research avenue, it
would be of great interest to use a relatively large number of
partitions that may appear in different orientations, as well as,
partitions with cross-cut shreds.
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