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ABSTRACT
Cognitive radar refers to an adaptive sensing system exhibit-
ing high degree of waveform adaptivity and diversity enabled
by intelligent processing and exploitation of information from
the environment. The next generation of radar systems are
characterized by their application to scenarios exhibiting non-
stationary scenes as well as interference caused by use of
shared spectrum. Cognitive radar systems, by their inherent
adaptivity, seem to be the natural choice for such applications.
However, adaptivity opens up reliability issues due to uncer-
tainties induced in the information gathering and processing.
This paper lists some of the reliability aspects foreseen for
cognitive radar systems and motivates the need for waveform
designs satisfying different metrics simultaneously towards
enhancing the reliability. An iterative framework based on
multi-objective optimization is proposed to provide Pareto-
optimal waveform designs.

Index Terms— Cognitive radar, reliability, waveform di-
versity, waveform optimization, multi-objective optimization,
Pareto-optimal design.

1. INTRODUCTION

Signal processing and design for radar has been of interest
to engineers, system theorists and mathematicians in the last
couple of decades. In the last decade, however, the radar
world has been revolutionized by significant increase in the
computational resources; an ongoing revolution with con-
siderable momentum [1, 2]. Such advances are enabling
waveform design and processing schemes that can be cog-
nitive (also referred to as adaptive, or smart) while being
extremely agile in modifying information collection strategy
based on new measurements, and/or modified target or en-
vironmental parameters. These novel design and processing
schemes have also opened new avenues for enhancing ro-
bustness in radar detection/estimation, as well as coexistence
in networked environments with limited resources such as a
shared spectrum— all leading to increased reliability.

Waveform design and processing for radar has a crucial
role particularly in fulfilling the above promises of adaptiv-
ity, agility and reliability: it is widely known that a judicious

design of the transmit waveforms can significantly improve
the performance of active radar systems. However, the wave-
form design usually deals with various measures of quality
(including detection/estimation and information-theoretic cri-
teria), and moreover, the practical condition that the employed
signals must belong to a limited signal set. Such diversity
of design metrics and signal constraints lays the ground for
many interesting research works in waveform optimization.
Additionally, efficient waveform design for next-generation
radar is a topic of great interest due to the recent growing de-
mands in increasing the number of antennas/sensors in dif-
ferent radar applications (motivated by recent advances on
MIMO radar). From a similar viewpoint, efficient algorithms
for signal processing are necessary once the backscattered
signals are collected from the surrounding environment [3].

Cognitive radar represents a class of remote sensing sys-
tems capable of intelligent interaction with the environment
by adapting both waveform and processing functions based
on contextual awareness [4]. Its inherent ability to adapt,
seems to be an attractive choice for next- generation radar sys-
tems that need to cope with dynamic situations with agility
and reliability. This overview paper summarizes the relia-
bility aspects of cognitive radar systems and describes ap-
proaches to reliable waveform design. The various waveform
design metrics are reviewed in Section II, reliability aspects
are highlighted in Section III and algorithm design is pro-
vided in Section IV where in Pareto-optimal designs are also
included.

2. WAVEFORM QUALITY METRICS

We consider a cognitive radar system employing N (tempo-
rally or spatially diverse) measurements in a scenario involv-
ing a single target. The resulting received signal correspond-
ing to the range-Doppler cell of interest may be written as1

r = Λθx+ c(x) + η, (1)

1We use bold lowercase letters for vectors and bold uppercase letters for
matrices. Please see Table 1 for other notations used throughout the paper.



Table 1. Notations
x(k) the kth entry of the vector x
‖x‖n the ln-norm of x, defined as (

∑
k |x(k)|n)

1
n

XH the complex conjugate of a matrixX
XT the transpose of a matrixX
tr(X) the trace of a matrixX
In the identity matrix of dimension n

where, θ contains features attributed to the target (direction
of arrival, Doppler, frequencies of operation etc) and Λθ is
an N × N matrix comprising target characteristics, Doppler
effects and the propagation environment for each of the di-
mensions. Further, x is the N -dimensional transmit signal,
c(x) represents the signal-dependent clutter, and η is the
receiver front-end noise (typically additive white Guassion
noise, AWGN). The components can be statistically charac-
terised, without loss of generality, as

E[η] = 0, E[ηηH ] = Rnn, (2)

E[c(x)] = 0, E[c(x) cH(x)] = Rcc.

Note that such a model subsumes several basic models earlier
developed in the literature: for example, the model in [5, 6]
is obtained by choosing Λθ being a diagonal matrix with the
(k, k) diagonal entry being αej(k−1)ν , with ν being the nor-
malized Doppler shift. For a MIMO uniform linear array with
spacing of d, these entries would also involve the direction of
arrival, with the (k, k) (diagonal) entry given as ej(k−1)θd/λ.

While several ingredients constitute a cognitive radar sys-
tem [4], one of the most critical aspects (and thus our focus
in the sequel) would on the design of probing waveforms that
make a cognitive information-collection possible. To this end,
we begin with a review of quality metrics for the waveform x,
to be designed for the system abstracted in (1). Some tradi-
tional performance metrics for designing x include the corre-
lation and ambiguity functions [1,7]. We note that, depending
on the sensing scenario, such metrics are not always the best
measures of quality for the probing waveforms. In addition,
due to the large number of constraints arising from the two-
dimensional nature of the ambiguity function [1, 8], design-
ing x for a given ambiguity pattern is deemed to be difficult.
However, there are a number of tractable metrics leading to
practical designs; see below.

2.1. Correlation Properties

Sequences with good autocorrelation properties have been
considered in radar application towards achieving an en-
hanced performance in the presence of clutter. To design
such sequences, minimizing the sidelobe levels of the cor-
relation function have been considered [9, 10]. Denoting r
to be the (2N − 1)-length conjugate symmetric correlation
of x [9, 10], an useful approach is to minimize the weighted

integrated sidelobe level of the correlation, defined as

WISL(x) =

N−1∑
k=1

p(k)|r(k)|2, (3)

where p(k) are the nonnegative weights to be assigned by the
user/system. Alternatively, one may consider a minimization
of the peak sidelobe level of the correlation function, viz.

PSL(x) = max {|r(k)|}N−1
k=1 . (4)

2.2. Spectral Properties

Spectral properties have a strong connection (established by
the Fourier transform) with correlation properties [10]. Nev-
ertheless, it is sometimes more interesting to focus on the
spectral properties of the probing waveforms. In wideband
applications, for instance, spectral shaping of the waveform
becomes important when nulls in specific frequencies are de-
sired to avoid interference [11]. Such a design objective in-
volves minimizing the Spectral Error Measure (SEM),

SEM(x) = ‖F (Ω)x−Ξy‖2, (5)

with respect to x and Ξ, where Ξ is a N ×N diagonal matrix
including auxiliary phasors on the diagonals, F (Ω) denotes
the rows of the DFT matrix indexed by Ω and y is the desired
value at the frequency bins corresponding to Ω.

2.3. Information-Theoretic Criteria

The above criteria do not effectively exploit the target and en-
vironmental information available through the relation in (1).
Since the radar system aims to draw significant information
about the target signature from the received signal, it is nat-
ural to consider the maximization of the mutual information
between the amplitude of the target return and the received
signal as the design objective. This metric is considered in lit-
erature, for e.g., [2], [12–16]. In particular, for the relation in
(1), modelling the various components as Gaussian, the signal
design involves maximizing the mutual information I(·),

I(r,x|θ) ∝ log det
(
IN + ΛH

θ [Rcc +Rnn]
−1

ΛθQ
)
, (6)

over Q, where, Q = E[xxH ] subject to a power constraint
on tr(Q) ≤ Px where Px denotes the signal power.

2.4. Signal-to-Interference-plus-Noise Ratio (SINR)

SINR is a classical metric that is widely used when a coherent
processing of the N -dimensional signal in (1) is to be consid-
ered; it takes the form,

SINR =

∣∣wHΛθx
∣∣2

wH [Rcc +Rnn]w
, (7)



where w is the receive filter (a.k.a the beamforming vector).
Signal design maximizing SINR subject to power constraint,
||x||22 ≤ Px has been studied extensively; see e.g. [5, 6, 17],
and the references therein.

3. METRIC INTEGRATION FOR RELIABILITY

Waveform design for robustness or reliability in cognitive
radar is a proactive approach to ensure that the quality of
probing waveforms is satisfactory as measured by several
quality metrics (such as those discussed in Section 2). The
problem thus can be formulated as an optimization problem in
which several quality metrics (also referred to as objectives)
are to be maximized simultaneously. The need for metric in-
tegration arises from the multitude of scenarios under which
the cognitive radar is envisaged to operate and the uncer-
tainties involved therein. In the following, we review some
specific scenarios where design for reliability/robustness is
instrumental.

3.1. Clutter Uncertainty

The clutter model used in [5, 6] assumes a stationary process
with known Rcc. However, in many situations, like in the
case of dynamic scenes, the clutter process may not be sta-
tionary and/or Rcc may not be estimated accurately. Assum-
ing θ to be known, uncertainty in Rcc affects maximizing
I(·) and SINR. In particular, maximizing (7) for robustness
in clutter uncertainty may be formulated as

maxx∈X ,w ∀Rcc
{SINR (Rcc)}, (8)

s. t.Rcc = R̂cc + ∆, ||∆|| ≤ δ,

where X is the constraint set of the probing signals, R̂cc is
the estimated covariance matrix of clutter, and ∆ denotes the
uncertainty of the covariance estimation. The uncertainty is
bounded by δ, with || · || referring to an appropriate matrix
norm in (8). It should be noted that (8) assumes a partic-
ular additive uncertainty model; other models driven by the
scenario settings can be used instead with appropriate con-
straints.

3.2. Doppler Uncertainty

Target detection in presence of clutter can be enhanced by ex-
ploiting the Doppler shift of moving targets; this arises from
the fact that the Doppler shift is a signature of the target veloc-
ity and differs from those of the clutter scatterers [5,6,18,19].
An exploitation of the Doppler warrants its knowledge at the
transmitter, which, more often than not, is also a subject of in-
vestigation. In the absence of Doppler information, the SINR
maximization takes the form,

maxx∈X ,w ∀θ∈Ω {SINR(θ)}, (9)

where θ is now a scalar parameter representing the normal-
ized Doppler shift while Ω represents the possible range of
Doppler (apriori information). This formulation is further de-
veloped in [5].

3.3. Angular Uncertainty

MIMO radars have been researched exhaustively in the past
decade due to the advantages offered by the spatial degrees of
freedom [1]. The angle of arrival from target transmission af-
fects2 the SINR and hence the design of transmit signals and
receive filters in (7). In practice, the target angle is obtained
from knowledge-aided methods or estimated through pre-
scan of the environment. However, there are other situations
where only the range of possible target angles are known,
for example in automotive applications where the pedestrian
(weak target) is in-front of a large metallic reflector (strong
interference). In such situations, maximizing SINR takes the
form presented in (9), with θ now denoting the target angle.
Further, Ω = [θc− ε, θc + ε] with θc denoting an approximate
angle and ε indicates the level of angular uncertainty. This
motivates the recourse to an angular-robust design requiring
maximization of the worst-case output SINR [20].

3.4. Spectral Coexistence

The ever-growing demand from communication systems, and
the trend towards an utilitarian high resolution sensing im-
poses significant strain on the scarce bandwidth, thereby mo-
tivating coexistence of high quality communication and sens-
ing devices [21–24]. Assuming the communication device to
be the primary user, enabling cognition at the sensing counter-
part allows for exploitation of available spectrum efficiently
by reusing unused bands for a limited duration locally. This
is enabled by dynamic spectrum management and spectrally
shaped waveforms. The cognitive radar waveform is required
to have nulls in specific bands to minimize interference with
systems operating in those bands [11]. The SEM(x) metric
of (5) can be extended to such scenarios as,

minx∈X ∀k∈[1,K] {‖F (Ωk)x−Ξyk‖2}, (10)

where K different spectra (i.e. {yk}) are to be matched.

3.5. Detection and Estimation— A Joint Perspective

Increasingly, a number of research works are being consid-
ered on waveform design algorithms which not only max-
imize the detection performance but, at the same time, are
also capable of controlling the estimation accuracy of target
parameters of interest. These problems naturally lend them-
selves to being formulated as multi-objective optimization.
In [25], a constrained multi-objective optimization problem
to design the spectral parameters of the OFDM waveform to

2Λθ(k, k) could be array response of the kth sensor



minimize the sparse-estimation as well as enhancing detec-
tion capability is devised. Similar approaches maximizing
SINR (respectively detection probability) as well as the accu-
racy of parameter estimation needed to determine SINR have
been considered [26], [19].

4. ALGORITHMS FOR
RELIABLE WAVEFORM DESIGN

Having discussed the scenarios warranting reliability and mo-
tivating waveforms be robust to different figures of merit, we
briefly indicate some design methodologies.

4.1. Max-Min and Average Designs

An usual approach to reliable waveform design is maximizing
the minimal performance of the system considering the var-
ious parameters. This is particularly useful when the objec-
tives to be optimized are actually drawn from the same quality
metric. For example, (9) is typically cast as,

maxx∈X ,w minθ∈Ω SINR(θ). (11)

On the other hand, ascribing a prior to the unknown param-
eters allows us to exploit statistics of the cost function, most
notably the mean. In particular, we could consider the follow-
ing instead of (12),

maxx∈X ,w Eθ [SINR(θ)] . (12)

4.2. Pareto-Optimal Waveform Design

Instead of a single objective optimization, it is possible to
have multiple figures of merit for designing x. This leads
to the multi-objective optimization function of the form,

max
y∈Y

. gθ(y) = [g1,θ(y), g2,θ(y), . . . , gM,θ(y)], (13)

where gk,θ(·) denotes the kth metric, y represents the opti-
mization variables (typically the waveform x, but can include
others like the beamforming vector) drawn from the set Y .
When the different objectives are in conflict, the optimization
in (13) does not have a global optimum [27]. In such situ-
ations, Pareto optimality, the state of allocation of resources
(or the optimization variables) in which it is impossible to im-
prove any one quality metric without making at least another
quality metric worse off is usually considered.

An overview of approaches towards estimating some
points of the Pareto boundary in presented in [27]. We now
present a different approach that allows for the incorporation
of multiple objective optimization in radar domain and then
provide an algorithm for Pareto-optimal waveform design.

4.2.1. Iterative approach for Pareto-optimal design

Let z be the variable indicating the different objectives. De-
pending on the constraints, z could be discrete or continuous;

(13) is as example of the former, while (11) is an example
of the latter. In the following, without loss of generality, we
consider the case of discrete z (the results can be extended to
its continuous counterpart). It can then be argued that, (13) is
equivalent to the following optimization problem,

max
y
∀z∈[1,M ]{hθ(y, z)}

s. t. y ∈ Y (14)

where hθ(y, z) = gz,θ(x), z ∈ [1,M ]. The following
proposition, proved in [28], provides an iterative algorithm
for obtaining Pareto-optimal solutions of (14).

Proposition 1: Assuming that all Pareto-optimal solutions
of (14) are finite, a Pareto-optimal solution of (14) can be ob-
tained using the following iterative approach. Given y(t) ∈
Y , (t ≥ 0), obtain y(t+1) as the solution to the following
(single-objective) optimization problem,

max
y(t+1)

min
z

{
hθ
(
y(t+1), z

)
hθ
(
y(t), z

) }
s. t. y(t+1) ∈ Y.

(15)

Remark. It is worth noting that a max-min design is al-
ways Pareto-optimal. In fact, it is not difficult to verify that
a max-min design is a convergence point of the iterative ap-
proach in Proposition 1. Examples of max-min can be found,
e.g., in [5] and [6].

5. CONCLUSIONS

An overview of the reliability aspects of the emerging cogni-
tive radio paradigm is provided and appropriate waveform de-
sign metrics are highlighted. Algorithms for waveform design
are subsequently described including the max-min formula-
tion as well as a multi-objective optimization incorporating
relevant design metrics.
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