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Abstract—In this paper, we consider the cognitive satellite
uplink where satellite terminals reuse frequency bands of Fixed-
Service (FS) terrestrial microwave links which are the incumbent
users in the Ka 27.5-29.5 GHz band. In this scenario, the
transmitted power of the cognitive satellite terminals has to be
controlled so as to satisfy the interference constraints imposed
by the incumbent FS receivers. We investigate and analyze a set
of optimization frameworks for the power and rate allocation
problem in the considered cognitive satellite scenario. The main
objective is to shed some light on this rather unexplored scenario
and demonstrate feasibility of the terrestrial-satellite co-existence.
In particular, we formulate a multi-objective optimization prob-
lem where the rates of the satellite terminals form the objective
vector and derive a general iterative framework which provides
a Pareto-optimal solution. Next, we transform the multi-objective
optimization problem into different single-objective optimization
problems, focusing on popular figures of merit such as the sum-
rate or the rate fairness. Supporting results based on numerical
simulations are provided which compare the different proposed
approaches.

I. INTRODUCTION

The demand for broadband satellite services is growing at
unprecedented rates and the licensed spectrum of 500 MHz for
exclusive use, both for uplink and downlink, in the Ka band
has been shown to be insufficient to meet the forthcoming
demands [1], [2]. In this regard, the application of Cognitive
Radio (CR) technology has emerged as a promising solution to
enhance the satellite spectrum utilization [3]–[6]. In this paper,
we focus on the cognitive Geostationary Orbit (GEO) satel-
lite uplink where Return Channel Satellite Terminal (RCST)
transmitters reuse the Ka-frequency bands of incumbent Fixed
Service (FS) terrestrial microwave links. In this scenario, the
primary goal is to provide good throughput to the RCSTs while
protecting the FS links from harmful interference.

Very few works have investigated the cognitive satellite
uplink scenario [7]–[10]. The applicability of CR in the
aforementioned scenario was discussed in [7], concluding that
both satellite and terrestrial systems could potentially operate
in the same band without degrading each others’ performance.
The same cognitive satellite uplink paradigm was considered
in [8]. Specifically, [8] proposes a novel power control based
on the inverse Signal-to-Interference plus Noise Ratio (iSINR).
However, [8] neglects the aggregate interference caused by
multiple RCSTs. It is important to note that, although a
Multi-Frequency Time Division Multiple Access (MF-TDMA)

scheme is employed in the DVB-RCS2 standard for the return
link [11], it may happen that more than one RCST (while
operating on different carrier frequencies) produce aggregated
interference to the FS microwave network because the carrier
bandwidth of the FS microwave links is usually higher than
that of the RCSTs [12]. In our previous work [9], we took
this into account and proposed a sub-optimal joint power
and carrier allocation technique for the cognitive satellite
uplink and terrestrial FS co-existence scenario. The technique
presented in [9] was compared to different transmit power
allocation strategies in [10], depending on the amount of side
information available at each satellite terminal.

The cognitive satellite uplink can be cast as an underlay
CR network, where cognitive users’ transmit power is limited
by interference constraints imposed by the primary system
[13]. Power control policies for cognitive underlay networks
differ from conventional ones considering that they have severe
transmit power limitations that arising from the spectrum
sharing scenario. The use of game theory has proliferated as an
important mathematical tool for distributed resource allocation
and to model the primary-secondary users’ interaction [14],
[15]. However, game-theoretic approaches usually lead to
complex optimization problems. Simpler decentralized power
control algorithms for wireless cellular systems can be found
in [16], [17].

Herein, we investigate and analyze a set of optimization
frameworks for power and rate allocation in cognitive satellite
uplink networks over a specific set of carriers pre-assigned
to the users. Our goal is to shed some light on this rather
unexplored scenario and possibly pave the way for future
research in this area. More precisely, we propose and solve
different optimization problems depending on the objective
function to be optimized. We start formulating a multi-
objective optimization problem [18] where the rates of the
RCSTs form the objective vector. For this, we derive a general
iterative framework which provides a Pareto-optimal solution
of the problem. However, there is no single optimal solution
for multi-objective optimization problems. In practice, a single
optimal alternative must be identified for engineering designs.
To this end, we transform the multi-objective optimization
problem into different single-objective optimization problems,
whose main goal is to provide the best solution by finding the
minimum or maximum value of a single objective function



Fig. 1: Satellite-terrestrial co-existence network with K = 2
RCSTs and L = 4 FS stations

that lumps all different objectives into one. In this sense, we
focus this paper in popular figures of merit for measuring the
performance of a communication system such as the sum-rate
or the rate fairness. These popular objective functions, which
have been widely investigated for conventional communication
networks, have never been examined for cognitive satellite
uplink communications. It should be noted that the cognitive
GEO satellite uplink differs from the conventional interference
channel in that the interference from the FS terrestrial system
to the satellite can be neglected due to large distance between
them as well as the directivity and limited EIRP of the Ka band
terrestrial communications [19]. Regarding fairness, we derive
a simple and efficient algorithm which provides the optimal
solution in terms of Max-Min fairness. Finally, we compare
all the proposed transmit power allocation derived from the
different optimization strategies through numerical simulation
experiments.

The remainder of this paper is organized as follows. In
Section II we present the problem description and formula-
tion. Section III focuses on the multi-objective optimization
problem. In Section IV we transform the multi-objective opti-
mization problem into different single-objective optimization
problems. In Section V we provide supporting results based
on numerical data. Finally, Section VI concludes the paper.

II. PROBLEM DESCRIPTION

Let us consider a cognitive satellite network consisting of K
RCSTs and L FS microwave stations, as shown in Fig. 1. As
mentioned earlier, although MF-TDMA scheme is employed
in DVB-RCS2 standard, the aggregate interference may occur
at the FS microwave network. We assume that the return
link between each RCST transmitter and the corresponding
satellite is not affected by the terrestrial transmissions due
to the limited EIRP of the terrestrial networks, the large
distance between them and the over-the-horizon directivity of
FS terrestrial communications [19].

Regarding resource management, each satellite network is
coordinated by a Network Control Center (NCC), which, in
current systems, collects Signal-to-Noise Ratio (SNR) values

Fig. 2: Simplified scheme of cognitive satellite uplink network
with K = 2 and L = 3.

from the RCSTs and manages the network resources and rate
demands accordingly. Assume that the NCC has a perfect
knowledge of the interference channel link gains, namely
{ak,l}, between the k-th RCST and the l-th FS station. The
interference channel links of a simplified satellite-terrestrial
co-existence network with K = 2 RCSTs and L = 3 FS
stations are shown in Fig. 2.

Let pk denote the transmit power of the k-th RCST. Let
p = [p1 p2 . . . pK ]

T represent the power allocation
vector, and pmax denote the maximum power budget that a
RCST can afford, i.e., 0 ≤ pk ≤ pmax. The achievable rate by
the k-th RCST is a function of the corresponding transmitted
power pk and is given by

rk = log2

(
1 +

dkpk
σ2
k

)
[bits/sec/Hz], (1)

where dk denotes the channel power gain of the link from
the k-th RCST to the satellite (including transmit and receive
antenna gains and propagation losses) and σ2

k denotes the noise
power level of the k-th satellite link.

To protect the terrestrial stations against excessive interfer-
ence, the aggregated interference at the l-th station Ia(l) has
to satisfy the Ia(l) ≤ Ithr, where Ithr denotes the maximum
tolerable interference level which is defined by the regulatory
authorities. Typical reference limitations are given by ITU
recommendations such as ITU-R F.758, where the interference
level is recommended to be −10 dB below the receiver noise.

Our goal is to maximize the performance of the cognitive
satellite uplink while protecting the FS links from harmful
interference. Therefore, the user rates rk, k = 1, . . . ,K, are
our objective functions, which cannot be treated separately be-
cause they may be conflicting due to the interference constraint
Ap ≤ Ithr1, where 1 is the all-one vector and the channel gains
{ak,l} between the k-th RCST and the l-th FS station have
been rearranged in a matrix format as

A =

a1,1 · · · aK,1
...

. . .
...

a1,L · · · aK,L

 . (2)

We resort to multi-objective optimization [20]–[22] to consider
an optimization of rates for various RCSTs in the network. In



particular, the associated multi-objective optimization problem
can be formulated as follows:

max
p

r

s.t. Ap ≤ Ithr1
0 ≤ pk ≤ pmax, k = 1, . . . ,K

(3)

where r = [r1 . . . rK ]
T, and {rk} are as defined in (1).

In this paper, we propose different alternatives to tackle the
optimization in (3).

III. PARETO-OPTIMAL USER RATE MAXIMIZATION

Inspired by the literature on economics, Pareto optimality
describes a state in optimization problems in which resources
are distributed such that it is not possible to improve a
single objective without causing at least one other objective to
become worse than before the change [23]. The set of Pareto
optimal points is typically referred to as the Pareto boundary.
All other feasible combinations form the Pareto feasible set
which is enclosed by the Pareto boundary.

We note that as {rk} in (3) are monotonically increasing
functions of the corresponding {pk}, the multi-objective prob-
lem in (3) is equivalent to

max
p

p

s.t. p ∈ Ω
(4)

where Ω denotes the set of feasible vectors p satisfying the two
constraints of (3). Following the notation in [18], we define
the Pareto feasible set as P = {p : p ∈ Ω}, which contains all
the combinations of possible values pk that are simultaneously
attainable with the available resources.

To find a Pareto-optimal solution to (4), meaning a solution
that lies on the Pareto-boundary of the problem, we first
propose a general iterative framework and then discuss its
application to (4).

A. General iterative framework for pareto-optimization
Consider the following optimization problem:

max
x

all
y

f (x, y)

s.t. x ∈ Γ
(5)

Proposition 1: Assuming that all Pareto-optimal solutions of
(5) are finite, a Pareto-optimal solution of (5) can be obtained
using the following iterative approach. Given x(t) ∈ Γ,
(t ≥ 0), obtain x(t+1) as the solution to the following (single-
objective) optimization problem,

max
x(t+1)

min
y

{
f
(
x(t+1), y

)
f
(
x(t), y

) }
s.t. x(t+1) ∈ Γ

(6)

Proof: At x(t+1) = x(t), we have
f(x(t+1),y)

f(x(t),y)
= 1, and

consequently, min
y

{
f(x(t+1),y)

f(x(t),y)

}
= 1. As a result, for the

optimal x(t+1) of (6),

min
y

{
f
(
x(t+1), y

)
f
(
x(t), y

) } ≥ 1 (7)

which implies that f
(
x(t+1), y

)
≥ f
(
x(t), y

)
, ∀y.

B. Application to the cognitive satellite uplink

Returning to the specific problem of power allocation in
(4), the previous general framework can be employed simply
as follows. Given p

(t)
k ∈ P (t ≥ 0), the power allocation for

the time instant (t+ 1), p(t+1)
k , is given by the solution of

max
p
(t+1)
k

min
k

{
p

(t+1)
k /p

(t)
k

}
s.t. p(t+1) ∈ Ω

(8)

which requires solving a simple Linear Program (LP) at each
iteration. Note that the value of p(t+1)

k /p
(t)
k should approach

one as t→∞..
The optimization problem in (8) can be reformulated in

a simpler form observing that α = min
k

{
p

(t+1)
k /p

(t)
k

}
is

equivalent to αp
(t)
k ≤ p

(t+1)
k , k = 1, . . . ,K, for α being the

largest possible real number. In particular, we can rewrite (8)
as

max
p
(t+1)
k ,α

α

s.t. p(t+1) ∈ Ω

αp
(t)
k ≤ p

(t+1)
k , k = 1, . . . ,K

(9)

in which the optimal α would be always larger than or equal
to one. The solution to (9) is always a rate tuple on the Pareto
rate boundary of (3), regardless of the initial point p(t=0). The
only constraint for the initial point is p(t=0) ∈ P .

Remark Due to the convexity of the constraint set in (8) and
(9), the proposed iterative method should converge in exactly
one iteration, as finding the global optimum of (9) implies
that some of the {pk} cannot be increased any further while
p ∈ Ω.

IV. MULTI-OBJECTIVE TO SINGLE-OBJECTIVE
TRANSFORMATION

In the previous section, we have seen that the solution of a
multi-objective optimization problem consists of a set, namely
the Pareto boundary. However, from a practical point of view,
a communication system ultimately requires a single solution
for operation. Picking a desirable point out of the set of the
Pareto boundary requires the incorporation of preferences or
priorities into the problem [24].

We divide this section into two parts. In the first part, we
focus on the weighted sum approach which transforms the
multi-objective optimization problem into a single-objective
optimization problem. The weighted sum is the simplest multi-
criteria decision making method but it is a compensatory
method in the sense that “poor” user rates can be compensated



by “good” ones. Moreover, the relation between weights and
user rate requirements remains unsolved [25].

The second part focuses on the user rate fairness. Rate
fairness essentially tries to avoid undesirable situations in
which a user maximizes its rate at the expense of some other
users. In this case, the rate of all users will be degraded to
match the rate of the user with the lowest quality channel.

A. Maximization of weighted sum-rate

The multi-objective optimization problem introduced in (3)
can be reformulated as maximization of a weighted sum of
user rates, which is one of the most popular figures of merit for
measuring the performance of a communication system. The
maximization of the weighted user rate with adaptive power
control can be expressed using the weighted sum approach as
follows:

max
p

K∑
k=1

wk log2

(
1 +

dkpk
σ2

)
s.t. p ∈ Ω

(10)

where non-negative {wk}, k = 1, . . . ,K are the given weights
assigned to different RCSTs, with

∑K
k=1 wi = 1. Note that

the objective function in (10) is concave with respect to the
power values, so it can be solved numerically using interior-
point methods. To solve (10) we used the CVX package [26],
which makes use of a primal/dual solver to deal with log-based
objective.

B. User rate fairness

With the emergence of heterogeneous networks, fairness
becomes crucially important along with concerns for excellent
throughput. There are many definitions of “fairness” in the
optimization literature [27], hence no consensus about a unique
definition is yet obtained.

Here, we consider the two most used definitions of fairness,
namely Max-Min fairness and proportional fairness.

1) Max-Min fairness: Max-Min fairness can be achieved if
and only if the allocation of available resources is feasible and
an attempt to increase the rate of any participants necessarily
results in the decrease in the rate of some other participants
with the smallest rate. In other words, it maximizes the user
with the minimum rate:

max
p∈Ω

min
k
{rk} (11)

On the downside, this definition of fairness does not perform
well in the presence of bottleneck users: if one user imposes
strong interference constraints it may prevent the others from
improving.

There are several algorithms for computing the Max-Min
fair allocation depending on the area of application. In general,
the most widely used algorithm for obtaining max-min fairness
is the water-filling algorithm (WF) [28]. Intuitively, WF satis-
fies users with a poor conditions first, and distributes evenly
the remaining resource to the remaining users enjoying a good
condition. In our case, we will focus first on assigning the

Algorithm 1 Max-Min Fairness

Require: Interference link gains A, number of FSS terminals
L, interference thresholds Ithr, maximum transmission
power Pmax and step size α.

1: Initialize:
The powers p(t=0) ← 0
The interference constraints I(t=0) ← Ithr1
The RCSTs with updated power Λ(t=0) = ∅
The iteration counter t = 1

2: repeat
3: Identify the worst FS station in terms of received

interference (the bottleneck ) assuming that all RCSTs
transmit with the same power:

lw = min
l

[
I(t−1)∑K
k/∈Λ(t) al,k

]
. (12)

4: Assuming all RCSTs transmit with the same power,
find the RCTS that contributes the most to the interference
of lw:

kw = max
k/∈Λ(t)

alw,k. (13)

5: Derive what is the maximum transmit power that the
RCSTs can transmit without exceeding the interference
constraint of lw:

pw =
I(t−1)(lw)∑K
k/∈Λ(t) alw,k

. (14)

6: Assign p(t) ← p(t−1), update the the kw-th RCST,
with value pw, i.e, p(t)

kw
= pw, and update Λ(t) = Λ(t−1) ∪

{kw}.
7: Find new interference constraints:

I(t) = I(t−1) − [A]k∈Λ(t) p(t)

k∈Λ(t) , (15)

where [A]k∈Λ(t) denotes the matrix formed with the
columns of A indicated by the index set Λ(t).

8: t← t+ 1 and return to step 1 if the stopping criterion
is not meet.

9: until t = K + 1 (all the RCTSs have been updated).

power of the RCST transmitters (the bottleneck RCSTs) af-
fecting the worst FS station, i.e., the FS station which receives
the highest level of aggregate interference. The proposed max-
min algorithm for the cognitive satellite uplink is presented as
Algorithm 1.

2) Proportional fairness: Proportional fairness (PF) is
achieved if and only if the allocation of available resources
is feasible and a transfer of resources between two users is
accepted if the percentage increase in rate of one user is
larger than the percentage decrease in rate of the other user.
According to [29], [30], a vector of rates r is proportinally
fair if it is feasible and if for any other feasible vector r̂
the aggregate of proportional change is zero or negative, i.e.∑

r∈Ω
r̂−r

r ≤ 0. In [30], it is proved that a proportionally
fair allocation of rates is given by maximizing the sum
of logarithmic utility functions. Therefore, in our case, the



problem can be formulated as,

max
p

K∑
k=1

log10(pk)

s.t. p ∈ Ω

(16)

which can be solved using CVX package [26].

V. SIMULATION RESULTS

In order to evaluate the proposed optimization solutions, we
consider a simple scenario with K = 2 RCSTs like the one
depicted in Fig. 2. The parameters are defined as follows,

A =

[
0.4 0.25
0.1 0.3
0.2 0.1

]
, Ithr = 2, pmax = 10, dk = 1, σ2

k = 1, ∀k

(17)
Figures 3(a) and 3(b) illustrate the power and rate Pareto

regions and the corresponding Pareto power and Pareto rate
boundary for the cognitive satellite uplink sharing frequency
resources with the terrestrial network.

Figures 3(c) and 3(d) show the results of the proposed
techniques and compare the result with the gradient-based
power control proposed in [10], [17] with αk = 0.1, ∀k,
and 200 iterations. For comparison, we solved and plotted
the result of max

p

∑K
k=1 wkpk, subject to p ∈ Ω, which

corresponds to the maximization of the sum-power optimiza-
tion. We considered wk = 1, ∀k, both for the sum-rate and
sum-power optimization. For (9), we selected the initial point
randomly over the power Pareto region. Both power and rate
results shown in Fig. 3 have been summarized in Table I and
II, respectively.

In both Figures 3(c) and 3(d), we observe the technique
presented in [10] perfectly matches with the solution of the
maximization of the sum-powers, which goes in line with the
conclusion in [17]. However, this is not the optimal in terms of
sum-rate neither in terms of fairness. As expected, the max-
min fairness gives the same rate to both users. The PF, on
the other hand, allows a small difference between individual
rates to achieve higher sum-rate compared to the max-min.
The Pareto optimal solution lies in the Pareto boundary, but
its value strongly depends on the initial power assignment.

According to the achieved results, PF seems to be the best
solution since it provides a good trade-off between fairness and
overall satellite throughput. Even so, the choice of appropriate
algorithm depends on the design criteria we want to follow.

VI. CONCLUSION

In this paper, we investigated and analyzed a set of opti-
mization approaches to solve the power and rate allocation
in cognitive satellite uplink where RCSTs reuse frequency
bands of Ka-band terrestrial microwave links. We solve and
compare the proposed methods concluding that proportional
fairness is the best solution in terms of the good trade-off it
offers regarding fairness and rate. Results have demonstrated
the potential of power allocation optimization to satisfy the

TABLE I: Power Results [W]

Technique p1 p2 p1 + p2 p1 − p2
[10] 1.0527 6.3158 7.3684 5.2631

Pareto optimal (9) 1.7391 5.2174 6.9565 3.4783
Sum-Rate (10) 2.3126 4.2999 6.6125 1.9874

Max-Min (Algorithm 1) 3.0769 3.0769 6.1538 0
PF (16) 2.5001 3.9999 6.5 1.4998

TABLE II: Rate Results [bits/sec/Hz]

Technique r1 r2 r1 + r2 r1 − r2
[10] 1.0375 2.871 3.9085 1.8335

Pareto optimal (9) 1.4537 2.6363 4.09 1.1826
Sum-Rate (10) 1.7279 2.406 4.1339 0.67802

Max-Min (Algorithm 1) 2.0275 2.0275 4.055 0
PF (16) 1.8074 2.3219 4.1293 0.51451

interference requirements imposed by the incumbent terrestrial
network.
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