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Signal Design- some applications

Signal design for active sensing.
Goal: To acquire (or preserve) the maximum information from the
desirable sources in the environment.

Signal is a medium to collect information.

The research in this area is focused on the design and optimization of
probing signals to improve target detection performance, as well as
the target location and speed estimation accuracy.
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Signal Design- some applications

Signal design for communications.
Goal: To transfer the maximum information among chosen agents in
the network.

Applications in Channel Estimation, Code-Division Multiple-Access
(CDMA) Schemes, Synchronization, Beamforming, . . .
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Signal Design- some applications

Signal design for life sciences.
Goal: To make the best identification of the living organism, usually
by maximal excitation.

. . .
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Signal Design- Keywords

Waveform design and diversity (signal processing- communications)

Input design (control- system identification)

Sequence design (signal processing- information theory-
communications- mathematics)

Stimulus design, excitation design.
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Signal Design- Metrics

Mean-Square Error (MSE) of parameter estimation

Signal-to-Noise Ratio (SNR) of the received data

Information-Theoretic criteria

Auto/Cross Correlation Sidelobe metrics

Excitation metrics

Stability metrics

Secrecy metrics

. . .
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Signal Design- Constraints

Energy

Peak-to-Average Power Ratio (PAPR, PAR)

Unimodularity (being Constant-Modulus)

Finite or Discrete-Alphabet
(integer, binary, m-ary constellation)

. . .
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Signal Design

Many of these problem are shown to be NP-hard;
Many others are deemed to be difficult!

Challenges:

How to handle signal constraints?
–and how to do it fast?
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Signal Design- Methodologies

Useful design techniques:

Alternating Projections on Converging Sets (ALPS-CS)

Power Method-Like Iterations

MERIT
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Alternating Projections on Converging Sets (ALPS-CS)

Alternating Projections for signal design

Alternating Projections
convex vs non-convex, finite-alphabet
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Alternating Projections on Converging Sets (ALPS-CS)

Alternating Projections
convex vs non-convex, finite-alphabet

Example: T1 a set with 3 elements (green dots); T2 a convex set.
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Alternating Projections on Converging Sets (ALPS-CS)

Alternating Projections
convex vs non-convex, finite-alphabet

Example: T1 a set with 3 elements (green dots); T2 a convex set.

Significant possibility of getting stuck in a poor “solution”.
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Alternating Projections on Converging Sets (ALPS-CS)

Central Idea:
To replace the “tricky” set with a well-behaved (perhaps compact/convex)
set that in limit converges to the “tricky” set of interest! Then we employ
the typical alternating projections, while the replaced set, at each iteration,
gets closer to the “tricky” set.

Example: similar to the one before!
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Alternating Projections on Converging Sets (ALPS-CS)

Why should this work?
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Alternating Projections on Converging Sets (ALPS-CS)

Selection of the converging sets can be done by choosing a
converging function. Example (ν > 0)

(a) T = R− {0}, T † = {−1, 1} :

f (t, s) = sgn(t) · |t|e−νs
; (1)

(b) T = C− {0}, T † = {ζ ∈ C | |ζ| = 1} :

f (t, s) = |t|e−νs · e j arg(t). (2)
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Alternating Projections on Converging Sets (ALPS-CS)

If the associated function f is monotonic and identity,
we can show the convergence.

How to choose f “optimally”? (open problem)

For more details, see

“Computational Design of Sequences with Good Correlation
Properties,” IEEE Transactions on Signal Processing,
vol. 60, no. 5, pp. 2180-2193, 2012.
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Alternating Projections on Converging Sets (ALPS-CS)

A Numerical Example
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Figure: Design of a binary sequence of length 64 with good periodic
auto-correlation using ALPS-CS. (a) the sequence provided by ALPS-CS when
stopped, along with the corresponding binary sequence (obtained by clipping).
The autocorrelation of the binary sequence is shown in (b).
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ALPS-CS requires a design of the alternating projections
as well as a suitable choice of converging function.

Let’s see a simpler method!
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Power Method-Like Iterations

Many signal design problems can be formulated as (a sequence of)
quadratic programs (QPs): SNR maximization, CRLB minimization,
MSE minimization, beam-pattern matching, optimization of
information-theoretic criteria, low-rank recovery, maximum-likelihood.

Some may need more sophisticated ideas for transformation to QP:
fractional programming, MM algorithm, cyclic optimization,
over-parametrization, etc.
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Power Method-Like Iterations

Formulation:

max
s∈Cn

. sHRs (3)

s. t. s ∈ Ω

(Ω : search space)

We can usually assume that the signal power is fixed: (why?)

max
s∈Cn

. sHRs (4)

s. t. s ∈ Ω

‖s‖2
2 = n.
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Power Method-Like Iterations

Central Idea

Assume R is positive definite (or make it so).

Start from some feasible s = s(0), and form the sequence:

s
(t+1) = ProjΩ

(
Rs

(t)
)

(5)

where ProjΩ (x) = arg mins∈Ω, ‖s‖2
2=n ‖s − x‖2 denotes the nearest

vector in the search space (l2-norm sense).

The above power method-like iterations lead to a
monotonic increase of the QP objective. → convergence!

 This is very fast! (No matrix inversion needed.)
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Power Method-Like Iterations

Let’s see some examples– Constraints:

Unimodular s (Ω = {s : |s| = 1}n):

s
(t+1) = exp

(
j arg

(
Rs

(t)
))

(6)

. . . just keep the phase.

Binary s (Ω = {−1,+1}n):

s
(t+1) = sgn

(
<
(
Rs

(t)
))

(7)

. . . just keep the sign.

Sparse s (‖s‖0 ≤ k):

. . . just keep the k largest values of Rs(t) (and scale). (8)
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Power Method-Like Iterations

Transformations to QP
Example (beam-pattern matching, low-coherence sensing for radar): Given
positive-definite {Rk}tk=1 and non-negative {dk}tk=1,

min
s∈Cn

.
∑t

k=1 |sHRks − dk |2 (9)

s. t. s ∈ Ω

‖s‖2
2 = n.

Over-parametrized “almost-equivalent” form:

min
s,{uk}

.
∑t

k=1

∥∥∥R1/2
k s −

√
dkuk

∥∥∥2
(10)

s. t. s ∈ Ω, ‖s‖2
2 = n;

‖uk‖2 = 1, 1 ≤ k ≤ t.
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min
s,{uk}

.
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k=1

∥∥∥R1/2
k s −

√
dkuk

∥∥∥2

s. t. s ∈ Ω, ‖s‖2
2 = n;

‖uk‖2 = 1, 1 ≤ k ≤ t.

Minimization with respect to s boils down to

min
s∈Cn

.

(
s

1

)H
( ∑t

k=1 Rk
∑t

k=1

√
dkR

1/2
k uk∑t

k=1

√
dku

H
k R

1/2
k 0

) (
s

1

)
s. t. s ∈ Ω

‖s‖2
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Power Method-Like Iterations

Transformations to QP
For other examples, see

Information-theoretic metrics:
* “Unified Optimization Framework for Multi-Static Radar Code
Design Using Information-Theoretic Criteria,” IEEE Transactions on
Signal Processing, vol. 61, no. 21, pp. 5401-5416, 2013.

MSE:
* “Optimized Transmission for Centralized Estimation in Wireless
Sensor Networks,” Preprint.

* “Training Signal Design for Massive MIMO Channel Estimation,”
Preprint.
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Power Method-Like Iterations

For more details about power method-like iterations, see

* “Designing Unimodular Codes Via Quadratic Optimization,”
IEEE Transactions on Signal Processing,
vol. 62, no. 5, pp. 1221-1234, 2014.

* “Joint Design of the Receive Filter and Transmit Sequence
for Active Sensing,” IEEE Signal Processing Letters,
vol. 20, no. 5, pp. 423-426, 2013.
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Power method is fast, but doesn’t
reveal any information on where the signal quality stands

with regard to the optimal value of the design problem . . .
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MERIT

MERIT stands for a
Monotonically ERror-Bound Improving Technique
for Mathematical Optimization.

It’s a computational framework to obtain sub-optimality guarantees
along with the approximate solutions.

You want to know how much the solution can be trusted . . .
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The Central Idea

Let P(v , x) be an optimization problem structure with given and
optimization variables partitioned as (v , x).

Example

X = arg max tr(RX)
s.t. tr(QX) ≤ t

variable partitioning
=⇒

R,Q, t → v
X→ x
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The Central Idea

Now suppose P(v , x) is a “difficult” optimization problem; however,

A sequence v1, v2, v3, · · · of v can be constructed such that the
associated global optima of the problem, viz. xk = arg maxx P(vk , x)
are known for any vk , and the “distance” between v and vk , is
decreasing with k ;

A sub-optimality guarantee of the obtained solutions xk can be
efficiently computed using the distance between v and vk .
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The Central Idea

Then, computational sub-optimality guarantees is obtained along with
the approximate solutions, that might

outperform existing analytically derived sub-optimality guarantees, or

be the only class of sub-optimality guarantees in cases where no
a priori known analytical guarantees are available for the given
problem.
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Application

An example:
Unimodular Quadratic Programming (UQP)

UQP: max
s∈Ωn

s
H
Rs (11)

where R ∈ Cn×n is a given Hermitian matrix, and
Ω represents the unit circle, i.e. Ω = {s ∈ C : |s| = 1}.

UQP is NP-hard.
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Application

UQP: max
s∈Ωn

s
H
Rs

MERIT:
Build a sequence of matrices

(for which the UQP global optima are known)
whose distance from the given matrix R is decreasing.
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Application

UQP: max
s∈Ωn

s
H
Rs

Theorem

Let K(s) represent the set of matrices R for which a given s ∈ Ωn is the
global optimizer of UQP. Then

1 K(s) is a convex cone.

2 For any two vectors s1, s2 ∈ Ωn, the one-to-one mapping (where
s0 = s∗1 � s2)

R ∈ K(s1)⇐⇒ R � (s0s
H
0 ) ∈ K(s2) (12)

holds among the matrices in K(s1) and K(s2).
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Application

UQP: Approximation of K(s)

Theorem

For any given s = (e jφ1 , · · · , e jφn)T ∈ Ωn, let C(V s) represent the convex
cone of matrices V s = D � (ssH) where D is any real-valued symmetric
matrix with non-negative off-diagonal entries. Also let Cs represent the
convex cone of matrices with s being their dominant eigenvector (i.e the
eigenvector corresponding to the maximal eigenvalue). Then for any
R ∈ K(s), there exists α0 ≥ 0 such that for all α ≥ α0,

R + αssH ∈ C(V s)⊕ Cs (13)

where ⊕ stands for the Minkowski sum of the two sets.
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Application

UQP: Approximation of K(s)

Figure: An illustration of the cone approximation technique used for MERIT’s
derivation in unimodular quadratic programming.
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Application

UQP: MERIT Objective

Using the previous results, we build a sequence of matrices (for which
the UQP global optima are known) whose distance from the given
matrix R is decreasing.

Instead of the original UQP, we consider the optimization problem:

min
s∈Ωn,Q1∈C1,P1∈C(V 1)

‖R − (Q1 + P1)� (ssH)‖F (14)

(Q1 + P1)� (ssH) will get close to R.
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matrix R is decreasing.

Instead of the original UQP, we consider the optimization problem:

min
s∈Ωn,Q1∈C1,P1∈C(V 1)

‖R − (Q1 + P1)� (ssH)‖F (14)

(Q1 + P1)� (ssH) will get close to R.
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Application
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Figure: A comparison of power method-like iterations, the curvilinear search with
Barzilai-Borwein step size, and MERIT: (top) the UQP objective; (bottom) the
required time for approximating UQP solution (n = 10) with same initialization.
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Application

n Rank (d) #problems for
which γ = 1

Average γ Average SDR time
Average MERIT time

8 2 17 0.9841 1.08
8 16 0.9912 0.81

2 15 0.9789 2.08
16 4 13 0.9773 0.95

16 4 0.9610 0.92

Table: Comparison of the performance of MERIT and SDR when solving UQP for
20 random positive definite matrices of different sizes n and ranks d .
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MERIT

For more details on MERIT, see

* “Designing Unimodular Codes Via Quadratic Optimization,”
IEEE Transactions on Signal Processing,
vol. 62, no. 5, pp. 1221-1234, 2014.

* “Beyond Semidefinite Relaxtion: Basis Banks and Computationally
Enhanced Guarantees,” Submitted to IEEE International Symposium
on Information Theory (ISIT), Hong Kong, 2015.
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Summary- what we discussed?

- Various signal design problems arise in practice.

- Signal design methodologies:

Alternating Projections on Converging Sets (ALPS-CS)

Power Method-Like Iterations

MERIT
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