Detection and Estimation Theory
Lectures 18

Mojtaba Soltanalian- UIC
msol@uic.edu
http://msol.people.uic.edu

Based on ECE 531 Slides- 2011 (Prof. Natasha Devroye)
Detection Theory

- For -

Deterministic Signals
Known Signal in Gaussian Noise

>>> Matched Filter

We consider detecting the presence of a known signal \(s[n], n = 0, 1, \cdots, N - 1 \) in Gaussian noise. This means, the received signal \(x[n] \), for \(n = 0, 1, \cdots N - 1 \), is

\[
\begin{align*}
\mathcal{H}_0 &: x[n] = w[n] \\
\mathcal{H}_1 &: x[n] = s[n] + w[n],
\end{align*}
\]

where \(w[n] \) is for now assumed to be white with variance \(\sigma^2 \).

Recall that this means its autocorrelation function \(r_{ww}[k] = E(w[n]w[n+k]) = \sigma^2 \delta[k] \), where \(\delta[k] = 1 \) for \(k = 0 \) and 0 otherwise.

Starting from the likelihood ratio test, you can simplify the test to deciding \(\mathcal{H}_1 \) if the test statistic \(T(x) \) is above a threshold (threshold determined by \(P_{FA} \) in Neyman-Pearson detection and by the priors and costs in Bayesian detection),

\[
T(x) = \sum_{n=0}^{N-1} x[n]s[n] > \gamma'
\]
Matched Filter
a.k.a. Correlator, or Replica-Correlator

We consider detecting the presence of a *known* signal $s[n]$, $n = 0, 1, \cdots, N - 1$ in *Gaussian* noise. This means, the received signal $x[n]$, for $n = 0, 1, \cdots N - 1$.

$$T(x) = \sum_{n=0}^{N-1} x[n]s[n] > \gamma'$$

This test is called a *correlator* or *replica-correlator*. It is optimal in white Gaussian noise.

Another equivalent but more “signal processing” type approach to detecting $s[n]$ in the received $x[n]$ is to use a so-called *matched filter*. Here we view send the received signal $x[n]$ through a linear time invariant filter with a finite impulse response (FIR) $h[n] = s[N - 1 - n]$ for $n = 0, 1, \cdots N - 1$. This impulse response is “matched” to the signal, it’s a flipped version of it. We make our decision by sampling the output of the filter at time $N - 1$ and comparing it with the threshold γ', as before.
Detection Theory

- For -

Random Signals
Motivation & Formulation

- Some processes are better represented as random (e.g. speech)

- rather than assume completely random, assume signal comes from a random process of known \textbf{covariance structure}

Consider a binary hypothesis testing model of the following form:

\[\mathcal{H}_0 : x[n] = w[n] \]
\[\mathcal{H}_1 : x[n] = s[n] + w[n], \]

where \(w \sim \mathcal{N}(0, C_s) \) and \(s \sim \mathcal{N}(\mu_s, C_s) \) and \(s, w \) are independent. We have \(n = 0, 1, \cdots N - 1 \) (\(N \) samples).
Detection for Random Signals

Consider a binary hypothesis testing model of the following form:

$$
\mathcal{H}_0 : x[n] = w[n] \\
\mathcal{H}_1 : x[n] = s[n] + w[n],
$$

where $w \sim \mathcal{N}(0, C_w)$ and $s \sim \mathcal{N}(\mu_s, C_s)$ and s, w are independent. We have $n = 0, 1, \cdots N - 1$ (N samples).

We thus can discriminate between the two hypothesis based on both their means and covariances. Taking the likelihood ratio and simplifying, our test statistic $T(x)$ can be shown to be:

$$
T(x) = \frac{1}{2} x^T \left[C_{w}^{-1} C_s (C_s + C_{w})^{-1} \right] x + x^T (C_s + C_{w})^{-1} \mu_s
$$

The test statistic has a quadratic term in x (intuitively account for the different variances) as well as a linear term in x accounting for the different means.
Detection for Random Signals

>>> Various Scenarios

Energy detectors? Suppose we have WGN of variance σ^2 and a signal which is a zero-mean Wide Sense Stationary Gaussian process with variance σ_s^2?

Then $C_s = \sigma_s^2 I$, $\mu_s = 0$ and $C_w = \sigma^2 I$. Then the test statistic becomes $T(x) = \sum_{n=0}^{N-1} x^2[n]$ which is then compared to a threshold. This is just an energy detector, which makes sense as the only difference between the signal and the noise is its variance.
Detection for Random Signals

>>> Various Scenarios

Estimator-correlator? Suppose we have WGN of variance \(\sigma^2 \) and a signal of zero mean and covariance \(C_s \). Then the test statistic becomes \(T(x) = \sigma^2 x^T [C_s (C_s + \sigma^2 I)^{-1}] x \), which may be re-written as a new test statistic \(T'(x = x^T \hat{s} \text{ for } \hat{s} = C_s (C_s + \sigma^2 I)^{-1}) x \).

Interestingly, \(\hat{s} \) is the Minimum Mean Squared Error Estimate of the signal \(s \) given the received data \(x \) (we will see this later). So what we are in essence doing is correlating the received signal with an *estimate* of the signal \(s \), hence the name *estimator-correlator*.
Detection for Random Signals

>>> Various Scenarios

Estimator-correlator with colored noise? We now have \(w \sim N(0, C_w) \) and \(s \sim N(0, C_s) \). The test statistic becomes

\[
T(x) = \frac{1}{2} x^T C_w^{-1} \left[C_s (C_s + C_w)^{-1} x \right] = \frac{1}{2} x^T C_w^{-1} \hat{s}
\]

This looks like the generalized matched filter (matched filter in colored noise), where \(\hat{s} \) is now an estimate of the signal given by \(\hat{s} = C_s (C_s + C_w) x \) rather than the known signal we had before.