LEAST-SQUARES PROBLEM

$y - H \hat{w}$, is orthogonal to all vectors in $\mathcal{R}(H)$.

A least-squares solution is obtained when $y - H \hat{w}$ is orthogonal to $\mathcal{R}(H)$.

Therefore, it must hold that any candidate solution \hat{w} should result in a residual vector, $y - H \hat{w}$, that is orthogonal to Hp, for any vector p or, equivalently, $p^* H^* (y - H \hat{w}) = 0$. Clearly, the only vector that is orthogonal to any vector p is the zero vector, so that we must have

$$H^* (y - H \hat{w}) = 0$$

(29.6)

and we conclude that any solution \hat{w} of the least-squares problem (29.5) must satisfy the so-called normal equations:

$$H^* H \hat{w} = H^* y$$

(29.7)
LEAST-SQUARES PROBLEM

When many solutions \(\hat{w} \) exist, the one that has the smallest Euclidean norm, namely, the one that solves

\[
\min_{\hat{w}} \|\hat{w}\|^2 \quad \text{subject to} \quad H^*H\hat{w} = H^*y
\]

is given by \(\hat{w} = H^\dagger y \), where \(H^\dagger \) denotes the pseudo-inverse of \(H \).

Note: We first remark that, for a general matrix \(H \), the pseudo-inverse is defined in Sec. B.6, where the fourth statement in the theorem is also proven (see Lemma B.7). Here we note that when \(H \) has full rank, its pseudo-inverse is given by the following expressions:

\[
H^\dagger = \begin{cases}
(H^*H)^{-1}H^* & \text{when } N > M \ (\text{a "tall" matrix)} \\
H^*(HH^*)^{-1} & \text{when } N < M \ (\text{a "fat" matrix)} \\
H^{-1} & \text{when } N = M \ (\text{a square matrix)}
\end{cases}
\]

When \(H \) is rank-deficient, it is more convenient to define its pseudo-inverse in terms of its singular value decomposition, as explained in Sec. B.6. [See also Prob. VII.6 for a proof, from first principles, of the fourth statement of the theorem in the under-determined case.]
Summary of the Studied Least Squares Problems

TABLE 29.1 Normal equations associated with several least-squares problems.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cost function</th>
<th>Normal equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard least-squares</td>
<td>(\min_{\omega}</td>
<td></td>
</tr>
<tr>
<td>Weighted least-squares</td>
<td>(\min_{\omega}</td>
<td></td>
</tr>
<tr>
<td>Regularized least-squares</td>
<td>(\min_{\omega}</td>
<td></td>
</tr>
<tr>
<td>Weighted regularized least-squares</td>
<td>(\min_{\omega}</td>
<td></td>
</tr>
</tbody>
</table>
Summary of the Studied Least Squares Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cost function</th>
<th>Normal equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard least-squares</td>
<td>$\min_{\omega}</td>
<td></td>
</tr>
<tr>
<td>Weighted least-squares</td>
<td>$\min_{\omega}</td>
<td></td>
</tr>
<tr>
<td>Regularized least-squares</td>
<td>$\min_{\omega}</td>
<td></td>
</tr>
<tr>
<td>Weighted regularized least-squares</td>
<td>$\min_{\omega}</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 29.1 Normal equations associated with several least-squares problems.
RLS Algorithm

From the Weighted Regularized Least-Squares to RLS

Given an $N \times 1$ measurement vector y, an $N \times M$ data matrix H and an $M \times M$ positive-definite matrix Π, we saw in Sec. 29.7 that the $M \times 1$ solution to the following regularized least-squares problem:

$$\min_w \left[w^* \Pi w + \| y - H w \|^2 \right]$$ \hspace{1cm} (30.1)

is given by

$$\hat{w} = (\Pi + H^* H)^{-1} H^* y$$ \hspace{1cm} (30.2)

where, in comparison with (29.28), we are assuming $\bar{w} = 0$ for simplicity of presentation. The arguments would apply equally well to the case $\bar{w} \neq 0$.
RLS Algorithm

From the Weighted Regularized Least-Squares to RLS

We denote the individual entries of \(y \) by \(\{d(i)\} \), and the individual rows of \(H \) by \(\{u_i\} \), say,

\[
y = \begin{bmatrix} d(0) \\ d(1) \\ d(2) \\ \vdots \\ d(N-1) \end{bmatrix}, \quad H = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ \vdots \\ u_{N-1} \end{bmatrix}
\]

so that the solution \(\hat{w} \) in (30.2) is determined by data \(\{d(i), u_i\} \) defined up to time \(N - 1 \). In order to indicate this fact explicitly, we shall write \(w_{N-1} \) instead of \(\hat{w} \) from now on, with a time subscript \((N - 1) \). We shall also write \(y_{N-1} \) and \(H_{N-1} \) instead of \(y \) and \(H \) since these quantities are defined in terms of data up to time \(N - 1 \) as well. With this notation, we replace problem (30.1) by

\[
\min_w \left[w^* \Pi w + \|y_{N-1} - H_{N-1} w\|^2 \right] \quad (30.3)
\]

\[
\overset{\longrightarrow}{w_{N-1}} = (\Pi + H_{N-1}^* H_{N-1})^{-1} H_{N-1}^* y_{N-1}
\]
RLS Algorithm

From the Weighted Regularized Least-Squares to RLS

The time-update: \[y_N = \begin{bmatrix} y_N^{-1} \\ d(N) \end{bmatrix}, \quad H_N = \begin{bmatrix} H_N^{-1} \\ u_N \end{bmatrix} \]

\[\text{time-updated least-squares problem} \]

\[\min_w \left[w^* \Pi w + \| y_N - H_N w \|^2 \right] \]

\[w_N = (\Pi + H_N^* H_N)^{-1} H_N^* y_N \]

Remember: \[w_{N-1} = (\Pi + H_{N-1}^* H_{N-1})^{-1} H_{N-1}^* y_{N-1} \]
RLS Algorithm

From the Weighted Regularized Least-Squares to RLS

The time-update:

Introduce the matrices

\[
P_N \triangleq (\Pi + H_N^* H_N)^{-1}, \quad P_{N-1} \triangleq (\Pi + H_{N-1}^* H_{N-1})^{-1}
\]

(30.8)

with initial condition \(P_{-1} = \Pi^{-1} \). Then (30.4) and (30.7) can be written more compactly as

\[
\begin{align*}
\omega_{N-1} &= P_{N-1} H_{N-1}^* y_{N-1}, \\
\omega_N &= P_N H_N^* y_N
\end{align*}
\]

(30.9)

The time-update relation (30.5) between \(\{y_N, H_N\} \) and \(\{y_{N-1}, H_{N-1}\} \) can be used to relate \(P_N \) to \(P_{N-1} \) and \(\omega_N \) to \(\omega_{N-1} \).
RLS Algorithm

From the Weighted Regularized Least-Squares to RLS

The time-update:

\[
P_N^{-1} = \Pi + H^*_N H_N \\
= \Pi + H^*_{N-1} H_{N-1} + u^*_N u_N \\
= P_{N-1}^{-1} + u^*_N u_N
\]

\[
(A + BCD)^{-1} = A^{-1} - A^{-1} B (C^{-1} + DA^{-1} B)^{-1} DA^{-1}
\]

\[
A \leftarrow P_{N-1}^{-1}, \quad B \leftarrow u^*_N, \quad C \leftarrow 1, \quad D \leftarrow u_N
\]

\[
P_N = P_{N-1} - \frac{P_{N-1} u^*_N u_N P_{N-1}}{1 + u_N P_{N-1} u^*_N}, \quad P_{-1} = \Pi^{-1}
\]
RLS Algorithm

From the Weighted Regularized Least-Squares to RLS

The time-update:

\[P_N = P_{N-1} - \frac{P_{N-1} u_N^* u_N P_{N-1}}{1 + u_N P_{N-1} u_N^*}, \quad P_{-1} = \Pi^{-1} \]

\[w_N = P_N \left[H_{N-1}^* y_{N-1} + u_N^* d(N) \right] \]

\[= \left(P_{N-1} - \frac{P_{N-1} u_N^* u_N P_{N-1}}{1 + u_N P_{N-1} u_N^*} \right) \left[H_{N-1}^* y_{N-1} + u_N^* d(N) \right] \]

\[= \frac{P_{N-1} H_{N-1}^* y_{N-1}}{1 + u_N P_{N-1} u_N^*} - \frac{P_{N-1} u_N^*}{1 + u_N P_{N-1} u_N^*} u_N \frac{P_{N-1} H_{N-1}^* y_{N-1}}{1 + u_N P_{N-1} u_N^*} = w_{N-1} \]

\[+ P_{N-1} u_N^* \left(1 - \frac{u_N P_{N-1} u_N^*}{1 + u_N P_{N-1} u_N^*} \right) d(N) \]

\[w_N = w_{N-1} + \frac{P_{N-1} u_N^*}{1 + u_N P_{N-1} u_N^*} \left[d(N) - u_N w_{N-1} \right], \quad w_{-1} = 0 \]
RLS Algorithm

From the Weighted Regularized Least-Squares to RLS

The time-update:

\[
P_N = P_{N-1} - \frac{P_{N-1}u_N^*u_NP_{N-1}}{1 + u_NP_{N-1}u_N^*}, \quad P_{-1} = \Pi^{-1}
\]

\[
w_N = P_N \left[H_{N-1}^*y_{N-1} + u_N^*d(N) \right]
\]

\[
= \left(P_{N-1} - \frac{P_{N-1}u_N^*u_NP_{N-1}}{1 + u_NP_{N-1}u_N^*} \right) \left[H_{N-1}^*y_{N-1} + u_N^*d(N) \right]
\]

\[
= \frac{P_{N-1}H_{N-1}^*y_{N-1}}{1 + u_NP_{N-1}u_N^*} - \frac{P_{N-1}u_N^*}{1 + u_NP_{N-1}u_N^*}u_N \frac{P_{N-1}H_{N-1}^*y_{N-1}}{1 + u_NP_{N-1}u_N^*} = w_{N-1}
\]

\[
+ P_{N-1}u_N^* \left(1 - \frac{u_NP_{N-1}u_N^*}{1 + u_NP_{N-1}u_N^*} \right) d(N)
\]

\[
w_N = w_{N-1} + \frac{P_{N-1}u_N^*}{1 + u_NP_{N-1}u_N^*} [d(N) - u_Nw_{N-1}], \quad w_{-1} = 0
\]
RLS Algorithm

Algorithm 30.1 (RLS algorithm) Given $\Pi > 0$, the solution w_N that minimizes the cost

$$w^* \Pi w + \|y_N - H_N w\|^2$$

can be computed recursively as follows. Start with $w_{-1} = 0$ and $P_{-1} = \Pi^{-1}$ and iterate for $i \geq 0$:

- $\gamma(i) = 1/(1 + u_i P_{i-1} u_i^*)$
- $g_i = P_{i-1} u_i^* \gamma(i)$
- $w_i = w_{i-1} + g_i [d(i) - u_i w_{i-1}]$
- $P_i = P_{i-1} - g_i g_i^* / \gamma(i)$

At each iteration, it holds that w_i minimizes $w^* \Pi w + \|y_i - H_i w\|^2$, where $y_i = \text{col} \{d(0), d(1), \ldots, d(i)\}$ and the rows of H_i are $\{u_0, u_1, \ldots, u_i\}$. Moreover, $P_i = (\Pi + H_i^* H_i)^{-1}$.

\[\gamma(i) \quad \text{CONVERSION FACTOR} \quad ? \]
EXPONENTIALLY-WEIGHTED RLS ALGORITHM

It is more common in adaptive filtering to employ a *weighted* regularized least-squares cost function, as opposed to the unweighted cost in (30.6). More specifically, a diagonal weighting matrix is used whose purpose is to give more weight to recent data and less weight to data from the remote past.
EXPONENTIALLY-WEIGHTED RLS ALGORITHM

Let λ be a positive scalar, usually very close to one (e.g., $\lambda = 0.998$ or some similar value), say, $0 \ll \lambda \leq 1$, and introduce the diagonal matrix

$$
\Lambda_N \overset{\Delta}{=} \text{diag}\{\lambda^N, \lambda^{N-1}, \ldots, \lambda, 1\}
$$

(30.25)

Then replace (30.6) by

$$
\min_w \left[\lambda^{(N+1)}w^*\Pi w + (y_N - H_Nw)^*\Lambda_N(y_N - H_Nw) \right]
$$

(30.26)

or, more explicitly, by

$$
\min_w \left[\lambda^{(N+1)}w^*\Pi w + \sum_{j=0}^{N} \lambda^{N-j} |d(j) - u_jw|^2 \right]
$$

(30.27)

The scalar λ is called the forgetting factor since past data are exponentially weighted less heavily than more recent data.
Algorithm 30.2 (Exponentially-weighted RLS) Given $\Pi > 0$, and a forgetting factor $0 < \lambda \leq 1$, the solution w_N of the exponentially-weighted regularized least-squares problem (30.27), and the corresponding minimum cost $\xi(N)$, can be computed recursively as follows. Start with $w_{-1} = 0$, $P_{-1} = \Pi^{-1}$, and $\xi(-1) = 0$, and iterate for $i \geq 0$:

\[
\begin{align*}
\gamma(i) &= 1/(1 + \lambda^{-1} u_i P_{i-1} u_i^*) \\
g_i &= \lambda^{-1} P_{i-1} u_i^* \gamma(i) \\
e(i) &= d(i) - u_i w_{i-1} \\
w_i &= w_{i-1} + g_i e(i) \\
P_i &= \lambda^{-1} P_{i-1} - g_i g_i^* / \gamma(i) \\
\xi(i) &= \lambda \xi(i-1) + \gamma(i) |e(i)|^2
\end{align*}
\]

At each iteration, P_i has the interpretation $P_i = [\lambda^{(i+1)} \Pi + H_i^* \Lambda_i H_i]^{-1}$ and w_i is the solution of

\[
\min_w \left[\lambda^{(i+1)} w^* \Pi w + \sum_{j=0}^{i} \lambda^{i-j} |d(j) - u_j w|^2 \right]
\]

In addition, as was the case with (30.16)–(30.17), the following relations hold:

\[
g_i = P_i u_i^*, \quad \gamma(i) = 1 - u_i P_i u_i^* = 1 - u_i g_i, \quad r(i) = \gamma(i) e(i)
\]

where $r(i) = d(i) - u_i w_i$.