ECE 516: Adaptive Digital Filters
Lecture 12 (Least-Squares Methods)
Algorithm 14.1 (RLS algorithm) Consider a zero-mean random variable d with realizations $\{d(0), d(1), \ldots\}$, and a zero-mean random row vector u with realizations $\{u_0, u_1, \ldots\}$. The weight vector w_o that solves

$$\min_w E |d - uw|^2$$

can be approximated iteratively via the recursion

$$P_i = \lambda^{-1} \left[P_{i-1} - \frac{\lambda^{-1} P_{i-1} u_i^* u_i P_{i-1}}{1 + \lambda^{-1} u_i P_{i-1} u_i^*} \right]$$

$$w_i = w_{i-1} + P_i u_i^* [d(i) - u_i w_{i-1}], \quad i \geq 0$$

with initial condition $P_{-1} = \epsilon^{-1} I$ and where $0 \ll \lambda \leq 1$.

RLS was formulated and studied as an stochastic gradient algorithm.
--- we will look at the RLS through the well-established theory of least squares.
LEAST-SQUARES PROBLEM

Assume we have available N realizations of the random variables d and u, say,

$$\{d(0), d(1), \ldots, d(N-1)\} \text{ and } \{u_0, u_1, \ldots, u_{N-1}\}$$

respectively, where the $\{d(i)\}$ are scalars and the $\{u_i\}$ are $1 \times M$. Given the $\{d(i), u_i\}$, and assuming ergodicity, we can approximate the mean-square-error cost in (29.1) by its sample average as

$$E |d - uw|^2 \approx \frac{1}{N} \sum_{i=0}^{N-1} |d(i) - u_i w|^2 \quad (29.3)$$

In this way, the optimization problem (29.1) can be replaced by the related problem:

$$\min_w \left(\sum_{i=0}^{N-1} |d(i) - u_i w|^2 \right) \quad (29.4)$$

where we have removed the scaling factor $1/N$.

Let’s look at the vector form of (29.4)

– it’s more interesting, and also easier to deal with.
LEAST-SQUARES PROBLEM

The cost function (29.4) can be reformulated in vector notation as follows. We collect the observations \{d(i)\} into an \(N \times 1\) vector \(y\) and the row vectors \(\{u_i\}\) into an \(N \times M\) data matrix \(H\):

\[
y \triangleq \begin{bmatrix} d(0) \\ d(1) \\ d(2) \\ \vdots \\ d(N - 1) \end{bmatrix}, \quad H \triangleq \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ \vdots \\ u_{N-1} \end{bmatrix}
\]

Then (29.4) can be rewritten as

\[
\min_w \| y - Hw \|^2
\]

(29.5)

where the notation \(\| \cdot \|^2\) denotes the squared Euclidean norm of its argument, namely, \(\|a\|^2 = a^*a\) for any column vector \(a\). Problem (29.5) is known as the standard least-squares problem.
LEAST-SQUARES PROBLEM

Definition 29.1 (Least-squares problem) Given an $N \times 1$ vector y and an $N \times M$ data matrix H, the least-squares problem seeks an $M \times 1$ vector w that solves $\min_{w} \|y - Hw\|^2$.

Two cases can occur depending on the relation between the dimensions \{N, M\}:

1. **Over-determined least-squares** ($N \geq M$): In this case, the data matrix H has at least as many rows as columns, so that the number of measurements (i.e., the number of entries in y) is at least equal to the number of unknowns (i.e., the number of entries in w). This situation corresponds to an *over-determined* least-squares problem and, as we shall see, (29.5) will either have a unique solution or an infinite number of solutions.

2. **Under-determined least-squares** ($N < M$): In this case, the data matrix H has fewer rows than columns, so that the number of measurements is less than the number of unknowns. This situation corresponds to an *under-determined* least-squares problem for which (29.5) will have an infinite number of solutions.
Definition 29.1 (Least-squares problem) Given an $N \times 1$ vector y and an $N \times M$ data matrix H, the least-squares problem seeks an $M \times 1$ vector w that solves $\min_w \| y - Hw \|^2$.

The purpose of the discussion that follows is to show that all solutions \hat{w} to the least-squares problem (29.5) are characterized as solutions to the linear system of equations

$$H^*H\hat{w} = H^*y$$

which are known as the normal equations.
Differentiation Argument

Let $J(w)$ denote the cost function in (29.5), i.e.,

$$J(w) \triangleq \|y - Hw\|^2 = \|y\|^2 - y^*Hw - w^*H^*y + w^*H^*Hw$$ \hspace{1cm} (29.11)

Differentiating $J(w)$ with respect to w we find that its gradient vector evaluates to zero at all \hat{w} that satisfy

$$-y^*H + \hat{w}^*H^*H = 0$$

which are again the normal equations (29.7). The solution(s) \hat{w} so obtained correspond to minima of $J(w)$ since its Hessian matrix is nonnegative-definite, i.e.,

$$\nabla^2_w [J(w)] = H^*H \geq 0$$
LEAST-SQUARES PROBLEM

GEOMETRIC ARGUMENT

\(y - H \hat{w}, \) is orthogonal to all vectors in \(\mathcal{R}(H) \)

A least-squares solution is obtained when \(y - H \hat{w} \) is orthogonal to \(\mathcal{R}(H) \).

Therefore, it must hold that any candidate solution \(\hat{w} \) should result in a residual vector, \(y - H \hat{w} \), that is orthogonal to \(Hp \), for any vector \(p \) or, equivalently, \(p^* H^* (y - H \hat{w}) = 0 \). Clearly, the only vector that is orthogonal to any vector \(p \) is the zero vector, so that we must have

\[H^* (y - H \hat{w}) = 0 \] \hspace{1cm} (29.6)

and we conclude that any solution \(\hat{w} \) of the least-squares problem (29.5) must satisfy the so-called normal equations:

\[H^* H \hat{w} = H^* y \] \hspace{1cm} (29.7)
LEAST-SQUARES PROBLEM

\[\hat{y} = H \hat{\omega} \triangleq \text{projection of } y \text{ onto } \mathcal{R}(H) \]

\[\xi = ||y - H \hat{\omega}||^2 \]

\[= (y - H \hat{\omega})^* (y - H \hat{\omega}) \]

\[= y^* (y - H \hat{\omega}), \text{ since } \hat{\omega}^* H^* \bar{y} = 0 \text{ by (29.9)} \]

\[= y^* y - y^* H \hat{\omega} \]

\[= y^* y - \hat{\omega}^* H^* H \hat{\omega}, \text{ since } y^* H = \hat{\omega}^* H^* H \text{ by (29.7)} \]

\[= y^* y - \bar{y}^* \bar{y} \]

Theorem 29.1 (The normal equations) A vector \(\hat{\omega} \) solves the least-squares problem (29.5) if, and only if, it satisfies the normal equations

\[H^* H \hat{\omega} = H^* y \]

or, equivalently, if and only if, it satisfies the orthogonality condition

\[y - H \hat{\omega} \perp \mathcal{R}(H) \]

The normal equations are always consistent, i.e., a solution \(\hat{\omega} \) always exists and the resulting minimum cost is given by either expression:

\[\xi = ||y||^2 - ||\bar{y}||^2 = y^* \bar{y} \]

where \(\bar{y} = H \hat{\omega} \) is the projection of \(y \) onto \(\mathcal{R}(H) \) and \(\bar{y} = y - \bar{y} \) is the residual vector.
LEAST-SQUARES PROBLEM

When many solutions \(\hat{w} \) exist, the one that has the smallest Euclidean norm, namely, the one that solves

\[
\min_{\hat{w}} \| \hat{w} \|^2 \quad \text{subject to} \quad H^* H \hat{w} = H^* y
\]

is given by \(\hat{w} = H^\dagger y \), where \(H^\dagger \) denotes the pseudo-inverse of \(H \).

Note: We first remark that, for a general matrix \(H \), the pseudo-inverse is defined in Sec. B.6, where the fourth statement in the theorem is also proven (see Lemma B.7). Here we note that when \(H \) has full rank, its pseudo-inverse is given by the following expressions:

\[
H^\dagger = \begin{cases}
(H^* H)^{-1} H^* & \text{when } N > M \text{ (a “tall” matrix)} \\
H^* (H H^*)^{-1} & \text{when } N < M \text{ (a “fat” matrix)} \\
H^{-1} & \text{when } N = M \text{ (a square matrix)}
\end{cases}
\]

When \(H \) is rank-deficient, it is more convenient to define its pseudo-inverse in terms of its singular value decomposition, as explained in Sec. B.6. [See also Prob. VII.6 for a proof, from first principles, of the fourth statement of the theorem in the under-determined case.]
We restrict ourselves in this section to the case of over-determined least-squares problems with a full-rank data matrix H (and, hence, $N \geq M$). In this case, the coefficient matrix H^*H is invertible (actually positive-definite) and the least-squares problem (29.5) will have a unique solution that is given by

$$\hat{w} = (H^*H)^{-1}H^*y$$

with the corresponding projection vector

$$\hat{y} = H\hat{w} = H(H^*H)^{-1}H^*y$$

The matrix multiplying y in the above expression is called the projection matrix and we denote it by

$$\mathcal{P}_H \triangleq H(H^*H)^{-1}H^*, \text{ when } H \text{ has full column rank}$$

(29.19)

useful properties $\mathcal{P}_H^* = \mathcal{P}_H$, $\mathcal{P}_H^2 = \mathcal{P}_H$
Lemma 29.1 (Unique solution) When the matrix H has full-column rank (and, hence, $N \geq M$), the least-squares problem (29.5) will have a unique solution that is given by $\hat{w} = (H^* H)^{-1} H^* y$ Moreover, the projection of y onto $\mathcal{R}(H)$, and the corresponding residual vector, are given by $\hat{y} = P_H y$ and $\tilde{y} = P_H^\perp y$ so that y can be decomposed as

$$y = \hat{y} + \tilde{y} = P_H y + P_H^\perp y$$

with $\|y\|^2 = \|\hat{y}\|^2 + \|\tilde{y}\|^2$. The resulting minimum cost is $\xi = y^* P_H^\perp y$.
WEIGHTED LEAST-SQUARES

It is often the case that weighting is incorporated into the cost function of the least-squares problem, so that (29.5) is replaced by

$$\min_w (y - Hw)^* W (y - Hw) \quad W > 0$$

(29.21)

where W is a Hermitian positive-definite matrix. For example, when W is diagonal, its elements assign different weights to the entries of the error vector $y - Hw$.

We shall often rewrite the cost function in (29.21) more compactly as

$$\min_w \| y - Hw \|^2_W$$

(29.22)

where, for any column vector x, the notation $\| x \|^2_W$ refers to the weighted Euclidean norm of x, i.e., $\| x \|^2_W = x^* W x$.

Theorem 29.3 (Weighted least-squares) A vector \hat{w} is a solution of the weighted least-squares problem (29.21) if, and only if, it satisfies the normal equations $H^* W H \hat{w} = H^* W y$.
A second variation of the standard least-squares problem (29.5) is regularized least-squares. In this formulation, we seek a vector \(\hat{w} \) that solves

\[
\min_w \left[(w - \bar{w})^T \Pi (w - \bar{w}) + \|y - Hw\|^2 \right]
\]

(29.28)

where, compared with (29.5), we are now incorporating the so-called regularization term \(\|w - \bar{w}\|^2_\Pi \). Here, \(\Pi \) is a positive-definite matrix, usually a multiple of the identity, and \(\bar{w} \) is a given column vector, usually \(\bar{w} = 0 \).

One motivation for using regularization is that it allows us to incorporate some \textit{a priori} information about the solution into the problem statement. Assume, for instance, that we set \(\Pi = \delta I \) and choose \(\delta \) as a large positive number. Then, the first term in the cost function (29.28) becomes dominant and it is not hard to imagine that the cost will be minimized by a vector \(\hat{w} \) that is close to \(\bar{w} \) in order to offset the dominant effect of this first term. For this reason, we say that a “large” \(\Pi \) reflects high confidence that \(\bar{w} \) is a good guess for the solution \(\hat{w} \). On the other hand, a “small” \(\Pi \) indicates a high degree of uncertainty in the initial guess \(\bar{w} \).
Theorem 29.4 (Regularized least-squares) The solution of the regularized least-squares problem (29.28) is always unique and given by

\[
\hat{w} = \bar{w} + [\Pi + H^*H]^{-1} H^*(y - H\bar{w})
\]

The resulting minimum cost is given by either expression:

\[
\xi = (y - H\bar{w})^*\tilde{y} = (y - H\bar{w})^* [I + H\Pi^{-1}H^*]^{-1} (y - H\bar{w})
\]

where \(\tilde{y} = y - \hat{y}\) and \(\hat{y} = H\hat{w}\). Moreover, \(\hat{w}\) satisfies the orthogonality condition \(H^*\tilde{y} = \Pi(\hat{w} - \bar{w})\).
WEIGHTED REGULARIZED LEAST-SQUARES

We can combine the formulations of Secs. 29.6 and 29.7 and introduce a weighted regularized least-squares problem. The weighted version of (29.28) would have the form

$$\min_{\hat{w}} \left[(w - \bar{w})^* \Pi (w - \bar{w}) + (y - Hw)^*W(y - Hw) \right]$$ \hspace{1cm} (29.37)$$

where, as before, W is positive-definite. Actually, with $\Pi > 0$, the weighting matrix W can be allowed to be nonnegative-definite. It is easy to verify that all the expressions in Thm. 29.5 further ahead that do not involve an inverse of W will still hold.

Theorem 29.5 (Weighted regularized least-squares) The solution of the weighted regularized least-squares problem (29.37) is always unique and given by

$$\hat{w} = \bar{w} + \left[\Pi + H^*WH \right]^{-1} H^*W(y - H\bar{w})$$

and the resulting minimum cost is given by

$$\xi = (y - H\bar{w})^*W\tilde{y} = (y - H\bar{w})^* \left[W^{-1} + H\Pi^{-1}H^* \right]^{-1} (y - H\bar{w})$$

where $\tilde{y} = y - \hat{y}$ and $\hat{y} = H\hat{w}$. Moreover, \hat{w} satisfies the orthogonality condition $H^*W\tilde{y} = \Pi(\hat{w} - \bar{w})$.
Summary of the Studied Least Squares Problems

TABLE 29.1 Normal equations associated with several least-squares problems.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cost function</th>
<th>Normal equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard least-squares</td>
<td>$\min_{\omega} |y - H\omega|^2$</td>
<td>$H^*H\hat{\omega} = H^*y$</td>
</tr>
<tr>
<td>Weighted least-squares</td>
<td>$\min_{\omega} |y - H\omega|^2_W, W > 0$</td>
<td>$H^*WH\hat{\omega} = H^*Wy$</td>
</tr>
<tr>
<td>Regularized least-squares</td>
<td>$\min_{\omega} |\omega - \bar{\omega}|^2_\Pi + |y - H\omega|^2$</td>
<td>$(\Pi + H^H)(\hat{\omega} - \bar{\omega}) = H^(y - H\bar{\omega})$</td>
</tr>
<tr>
<td>Weighted regularized least-squares</td>
<td>$\min_{\omega} |\omega - \bar{\omega}|^2_\Pi + |y - H\omega|^2_W, \Pi > 0, W \geq 0$</td>
<td>$(\Pi + H^*WH)(\hat{\omega} - \bar{\omega}) = H^*W(y - H\bar{\omega})$</td>
</tr>
</tbody>
</table>
Summary of the Studied Least Squares Problems

TABLE 29.2 Orthogonality conditions associated with several least-squares problems. In the statements below, $\tilde{y} = y - \hat{y}$ where $\hat{y} = H\hat{w}$.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cost function</th>
<th>Orthogonality condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard least-squares</td>
<td>$\min_{\hat{w}} |y - H\hat{w}|^2$</td>
<td>$H^*\tilde{y} = 0$</td>
</tr>
<tr>
<td>Weighted least-squares</td>
<td>$\min_{\hat{w}} |y - H\hat{w}|_W^2, \ W > 0$</td>
<td>$H^*W\tilde{y} = 0$</td>
</tr>
<tr>
<td>Regularized least-squares</td>
<td>$\min_{\hat{w}} |w - \hat{w}|_\Pi^2 + |y - H\hat{w}|^2$ \ \ $\Pi > 0$</td>
<td>$H^*\tilde{y} = \Pi(\hat{w} - \hat{w})$</td>
</tr>
<tr>
<td>Weighted regularized least-squares</td>
<td>$\min_{\hat{w}} |w - \hat{w}|_W^2 + |y - H\hat{w}|_W^2$ \ \ $\Pi > 0, \ W \geq 0$</td>
<td>$H^*W\tilde{y} = \Pi(\hat{w} - \hat{w})$</td>
</tr>
</tbody>
</table>
Summary of the Studied Least Squares Problems

TABLE 29.3 Minimum costs associated with several least-squares problems. In the statements below, $\tilde{y} = y - \hat{y}$ where $\hat{y} = H\hat{w}$.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cost function</th>
<th>Minimum cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard least-squares</td>
<td>$\min_w |y - Hw|^2$</td>
<td>$y^*\tilde{y}$</td>
</tr>
<tr>
<td>Weighted least-squares</td>
<td>$\min_w |y - Hw|_W^2, \quad W > 0$</td>
<td>$y^*W\tilde{y}$</td>
</tr>
</tbody>
</table>
| Regularized least-squares| $\min_w \|w - \overline{w}\|_\Pi^2 + \|y - Hw\|^2$
\quad $\Pi > 0$ | $(y - H\overline{w})^*\tilde{y}$ |
| Weighted regularized least-squares | $\min_w \|w - \overline{w}\|_\Pi^2 + \|y - Hw\|_W^2$
\quad $\Pi > 0, \quad W \geq 0$ | $(y - H\overline{w})^*W\tilde{y}$ |