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Training Signal Design for Correlated
Massive MIMO Channel Estimation

Mojtaba Soltanalian*, Mohammad Mahdi Naghsh, Nafiseh Shariati, Petre Stoica, and Babak Hassibi

Abstract—In this paper, we propose a new approach to the
design of training sequences that can be used for an accurate
estimation of multi-input multi-output (MIMO) channels. The
proposed method is particularly instrumental in training se-
quence designs that deal with three key challenges: (i) arbitrary
channel and noise statistics that do not follow specific models,
(ii) limitations on the properties of the transmit signals, and (iii)
signal design for large-scale or massive antenna arrays. Several
numerical examples are provided to examine the proposed
method.

Index Terms—Channel estimation, massive MIMO, peak-to-
average-power ratio (PAR), signal design, training sequence.

I. INTRODUCTION

Accurate knowledge of multi-input multi-output (MIMO)
channel state information (CSI) plays an important role in
exploiting the full potential of MIMO communication systems.
A practical way to acquire instantaneous CSI of the MIMO
channel is training-based channel estimation which relies on
transmitting an a priori known sequence, namely a training
or pilot sequence, to the receiver, and estimating the instan-
taneous channel coefficients based on the received signal [1]–
[11]. This channel estimation scheme is illustrated in Fig. 1.

Massive MIMO is an emerging technological concept in
communications where a large number of antennas is em-
ployed at the base stations. Massive MIMO systems have
exhibited superior performance with respect to different qual-
ity metrics, including capacity, transmit energy efficiency,
latency, and robustness to jamming [12]–[16]. Signal design
for massive MIMO deals with many streams of signals or,
equivalently, many design variables. Such a large number of
degrees of freedom paves the way for a better quality of signal
design, but at the same time, makes the design computationally
expensive. Hence, it is no surprise that a considerable attention
has been paid to efficient methods that can handle the signal
design complexity arising from such large-scale arrays of
antennas.

This work is concerned with an efficient design of training
signals for channel estimation in massive MIMO systems. We
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Fig. 1. MIMO training for channel estimation: The optimized training signals
are transmitted during the training phase in order to estimate the instantaneous
channel information based on the received signal and the known input.

TABLE I
NOTATIONS

x(k) the kth entry of the vector x

‖x‖n the ln-norm of x, defined as
(∑

k |x(k)|n
) 1

n

XH the complex conjugate of a matrix X
XT the transpose of a matrix X
tr(X) the trace of a matrix X
‖X‖F the Frobenius norm of a matrix X
vec(X) the vector obtained by column-wise stacking of X
arg(X) the phase angle (in radians) of X
exp(X) the matrix exponential function defined element-

wisely as [exp(X)]k,l = e[X]k,l

<{X} the real part of X
X � Y X − Y is positive definite
⊗ the Kronecker product
In the identity matrix of dimension n
C the set of complex numbers
f(n) = O(nx) f(n) is upper bounded by c nx for some

0 < c <∞
x ∼ CN (0,X): the zero-mean random vector x is distributed

according to the circularly symmetric complex
Gaussian distribution with covariance X .

discuss the problem formulation and the contributions of the
paper in the following.

A. Problem Formulation

We consider a narrowband block fading point-to-point
MIMO communication link equipped with nT transmit and
nR receive antennas. Let P ∈ CB×nT be a matrix whose
rows comprise the training symbols at each transmitter where
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B ≥ nT [2].1 The training phase can be described by the
equation,

Y = HPT + N, (1)

in which H ∈ CnR×nT denotes the MIMO channel with
H(k, l) being the gain of the MIMO path between receiver
k and transmitter l. We assume vec(H) ∼ CN (0,R)
where R ∈ CnTnR×nTnR is the channel covariance matrix.
Moreover, N ∈ CnR×B represents the noise matrix whose
columns consist of (possibly colored) Gaussian noise, i.e.,
vec(N) ∼ CN (0,M) with M ∈ CBnR×BnR denoting the
noise covariance matrix. The received data is denoted by
Y ∈ CnR×B .

The key goal is to design the matrix P in order to produce
an accurate estimate of the channel H . To accomplish this
goal, we consider the minimization of the mean-squared error
(MSE) of the channel estimate when the minimum mean-
square error (MMSE) estimator is used to estimate the in-
stantaneous channel coefficients ( [18], [6], [8]), viz.

MSE = tr
{(

R−1 + (P⊗ InR
)HM−1(P⊗ InR

)
)−1
}
. (2)

B. Contributions of this work

In the literature, the optimized training sequence is usually
found by minimizing the MSE criterion under a total power2

constraint. Moreover, in order to make the problem tractable
(or to obtain a closed-form solution), the covariance matrices
associated with the channel and noise are usually assumed
to possess special structures, e.g. to satisfy the Kronecker
model or a diagonal matrix structure [1], [3], [5], [6], [8]. The
contributions of this paper can be summarized as follows:

• The problem formulation is cast in a rather general form;
i.e. no special structure is assumed for the covariance
matrices of the channel and noise.

• The proposed optimization approach can handle not only
the total training power but also more complicated signal
constraints that are typically of interest at the transmit-
side of the communication system [15], [19]–[21]. Such
constraints include constant-modulus, desired peak-to-
average-power ratio (PAR), and quantized-phase alphabet
restrictions. To the best of our knowledge, such a con-
strained training sequence design was not addressed in
the literature prior to this work.

• We devise an efficient cyclic method to tackle the result-
ing non-convex design problem. The low computational
complexity of the devised optimization approach makes
it a good candidate for usage in massive MIMO scenarios
[12]–[14], [22].

1Note that B ≥ nT is a condition for obtaining a meaningful channel
estimate [2]. However, although a larger B would be beneficial for obtaining
a more accurate estimate of the channel, it was shown in [17] that using a
smaller B leads to a larger capacity of the MIMO channel by leaving more
time for data transmission. Therefore, it would be typically advisable to use
the minimal amount of training symbols, i.e., B = nT .

2Please see (20) and the related discussions for details.

According to the goals set above, we consider the following
general form of the design problem

min
P

tr
{(

R−1 + (P⊗ InR
)HM−1(P⊗ InR

)
)−1
}

(3)

s.t. P ∈ Ω

where Ω denotes the constraints imposed on the training
sequences.

The rest of this work is organized as follows. The proposed
approach is presented in Section II. Several numerical exam-
ples are provided in Section III. Finally, Section IV concludes
the paper.

II. TRAINING SEQUENCE OPTIMIZATION

In what follows, we propose an iterative cyclic approach to
tackle (3). Let P̃ = P ⊗ InR

, and note that using the matrix
inversion lemma we have

θ ,
(
R−1 + P̃

H
M−1P̃

)−1

(4)

= R−RP̃
H
(
M + P̃RP̃

H
)−1

P̃R.

Define

X ,

(
R RP̃

H

P̃R M + P̃RP̃
H

)
, (5)

U , (InTnR
0nTnR×BnR

)T , (6)

and observe that

UHX−1U = θ−1. (7)

The goal is to minimize tr{θ} with respect to the training
matrix P . To this end, let f(V ,P ) , tr{V HXV } (with
V ∈ C(nTnR+BnR)×nTnR being an auxiliary variable), and
consider the following minimization problem:

min
V ,P

f(V ,P ) (8)

s.t. V HU = InTnR

P ∈ Ω.

For fixed P , the minimizer V of (8) can be obtained using
Result 35 in [23, p. 354] as

V ? = X−1U(UHX−1U)−1 (9)

=

(
θ−1

−
(
M + P̃RP̃

H
)−1

P̃Rθ−1

)
θ

=

(
InTnR

−
(
M + P̃RP̃

H
)−1

P̃R

)
.

In order to see why the over-parametrization in (8) is useful,
note that at the minimizer V = V ? of (8),

f(V ?,P ) = tr{θ}. (10)
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Hence, each step of a cyclic optimization of (8) with respect
to V and P will lead to a decrease of tr{θ}. More precisely,
by letting g(P ) = tr{θ} one can observe that

g
(
P (k+1)

)
= f

(
V (k+2),P (k+1)

)
(11)

≤ f
(
V (k+1),P (k+1)

)
≤ f

(
V (k+1),P (k)

)
= g

(
P (k)

)
where P (k+1) and V (k+2) are obtained by fixing V = V (k+1)

and P = P (k+1) in the criterion, respectively, and k denotes
the iteration number.

Next, note that the minimization of f(V ,P ) with respect to
P boils down to the following quadratic optimization problem:

min
P

tr
{
Q1P̃Q2P̃

H
}

+ 2<
{

tr
{
Q3P̃

H
}}

(12)

s.t. P ∈ Ω

where 
Q1 = Ṽ Ṽ

H

Q2 = R

Q3 = Ṽ R

(13)

and

Ṽ = −
(
M + P̃ ?RP̃

H

?

)−1

P̃ ?R (14)

is the lower block of V (see (9)), in which P̃ ? denotes the
previous known value of P̃ . The latter optimization problem
can be recast as

min
s̃

s̃H (Q2 ⊗Q1) s̃+ 2<
{
s̃H vec(Q3)

}
(15)

s.t. P ∈ Ω,

s̃ = vec(P̃ ) = vec(P ⊗ InR
),

or equivalently,

min
s̃

(
s̃
1

)H (
Q2 ⊗Q1 vec(Q3)
vecH(Q3) 0

)(
s̃
1

)
(16)

s.t. P ∈ Ω,

s̃ = vec(P ⊗ InR
).

Next we show that one can significantly reduce the dimension
of the above optimization problem thanks to the structured
sparsity of s̃ (proving Lemma 1, as well as Lemma 2 below,
is straightforward):

Lemma 1. The vector s̃ = vec(P ⊗ InR
) is a sparse vector

whose non-zero values occur at locations

k2Bn
2
R + k1BnR + k0nR + k1 + 1, (17)

for which

k0 ∈ {0, 1, · · · , B − 1}, (18)
k1 ∈ {0, 1, · · · , nR − 1},
k2 ∈ {0, 1, · · · , nT − 1}.

To exploit the sparsity of s̃, let J ∈ CBnTnR×BnTn
2
R

comprise the rows of IBnTn2
R

that are indexed by (17). Then
(16) can be reformulated as

min
s

(
s
1

)H (
J(Q2 ⊗Q1)JT J(vec(Q3))

vecH(Q3)JT 0

)(
s
1

)

s.t. P ∈ Ω,

s = J s̃ = J (vec(P ⊗ InR
)). (19)

In the following, we constrain all the columns of P to
have a fixed l2−norm equal to

√
B, which characterizes a

fixed-energy scenario at each transmit antenna. Note that, in
the previous literature, usually the collective energy of the
antennas is assumed to be upper bounded, viz.

tr{PPH} ≤ BnT . (20)

However, the bounded-energy constraints such as (20) usually
are satisfied at equality (turning the bounded-energy constraint
to the fixed-energy alternative) due to the fact that the com-
munication system employs all the energy resource to achieve
a better signal transmission quality. Moreover, per-antenna
energy constraints are practically more useful compared to
the collective energy constraints, as the latter might cause an
uneven (and sometimes harmfull) distribution of power over
the antennas [19]. In fact, the per-antenna energy constraint is
typically relaxed to a form similar to (20) solely to make the
problems convex, or more tractable. A direct consequence of
the fixed-energy assumption on the columns of P is that the
vector s (as well as s̃) contains a given energy, as (similar to
s̃) the vector s includes exactly nR copies of each and every
entry of P . This fact is elaborated on further in Lemma 2
which identifies the locations in s̃ associated with the entries
of P . Lemma 2 will also be essential to tackle the quadratic
program arising from the over-parametrization in (8) and its
equivalent forms discussed herein.

Lemma 2. In the vector s̃ = vec(P ⊗InR
), the entry P (k, l)

appears exactly nR times at locations

(l − 1)Bn2
R + tBnR + (k − 1)nR + t+ 1, (21)

for t ∈ {0, 1, · · · , nR − 1}.

Let

Q ,

(
J(Q2 ⊗Q1)JT J(vec(Q3))

vecH(Q3)JT 0

)
(22)

and also let Q̂ = λI − Q � 0, where λ is a real number
larger than the maximum eigenvalue of Q. Due to the fixed
energy of s, (19) can be tackled via considering the following
equivalent optimization problem:

max
s

ŝH Q̂ ŝ (23)

s.t. P ∈ Ω,

s = J (vec(P ⊗ InR
)),

ŝ =

(
s
1

)
.
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TABLE II
CYCLIC ALGORITHM FOR CONSTRAINED TRAINING SIGNAL DESIGN

Step 0: Initialize P using a random matrix in Ω.
Step 1: Compute the minimizer V of (8) using (9).
Step 2: Update the current design of P using the power method-like
iterations defined in (27), and the appropriate matrix solutions below (27),
µ times (or until convergence).
Step 3: Repeat steps 1 and 2 until a stop criterion is satisfied, e.g.∣∣∣MSE(k+1) −MSE(k)

∣∣∣ < ε for some given ε > 0, where k denotes
the outer loop iteration number.

Now let Ω̂ denote the constraints on ŝ imposed in (23). Using
this notation, we can rewrite (23) as

max
ŝ∈Ω̂

ŝH Q̂ ŝ (24)

The above optimization problem is NP-hard in general, partic-
ularly so when P belongs to the unimodular, or q-ary matrix
sets [24], [25]. However, an increasing sequence of values
of the objective function in (24), and at the same time, a
monotonically decreasing sequence of values for (8), can be
obtained by an extension of the power method-like iterations
originally developed in [25] and [26]. Namely, starting from a
current design of ŝ, say ŝ(0) (or equivalently a current design
of the training matrix i.e. P (0)), an increasing objective of
(24) can be obtained by updating ŝ using the nearest-vector
problem:

min
ŝ(h+1)∈Ω̂

∥∥∥ŝ(h+1) − Q̂ŝ(h)
∥∥∥

2
(25)

where h denotes the inner-loop iteration number. We note that,
to obtain an increasing objective of (24), and a decreasing
(8), one does not necessarily need to employ (25) until
convergence; indeed, (25) can be used for an arbitrary number
of times, say µ, or until convergence. We refer the interested
reader to find proofs and further details on the properties of
power method-like iterations in [25] and [26].

Inspired by Lemma 2, we let {p′k,l(t)}
nR
t=1 denote the

entries of Q̂ŝ(h) occuring exactly in the same locations as
of P (h+1)(k, l) in ŝ(h+1). Then (25) can be tackled by
minimizing the criterion

B∑
k=1

nT∑
l=1

nR∑
t=1

∣∣∣P (h+1)(k, l)− p′k,l(t)
∣∣∣2 (26)

= const1 − 2<

{
B∑
k=1

nT∑
l=1

P ∗ (h+1)(k, l)

(
nR∑
t=1

p′k,l(t)

)}

= const2 +

B∑
k=1

nT∑
l=1

∣∣∣∣∣P (h+1)(k, l)−
nR∑
t=1

p′k,l(t)

∣∣∣∣∣
2

.

Consequently, (25) is equivalent to the nearest-matrix problem:

min
P (h+1)∈Ω

∥∥∥P (h+1) − P (h)
Σ

∥∥∥
F

(27)

where P (h)
Σ (k, l) =

∑nR

t=1 p
′
k,l(t) for all k, l, as given in (26).

For obtaining specific solutions to the nearest training matrix
problem above, we consider various signal constraints Ω.

• For Ω = set of matrices satisfying the fixed-energy
constraint:

P (h+1) = Γ
(
P

(h)
Σ

)
(28)

where the operator Γ(.) scales the columns of the matrix
argument to achieve an l2-norm of

√
B for each column.

• For Ω = set of unimodular matrices:

P (h+1) = exp
(
j arg

(
P

(h)
Σ

))
. (29)

• For Ω = set of matrices with discrete-phase entries (from
{2kπ/q : k = 0, 1, · · · , q − 1}):

P (h+1) = exp
(
jΦ
(

arg
(
P

(h)
Σ

)))
(30)

where the operator Φ(.) yields the closest q-ary phase
matrix with entries from the set {2kπ/q : k =
0, 1, · · · , q − 1}.

• For Ω = set of matrices satisfying a PAR constraint: Such
a nearest-matrix problem can be solved efficiently via a
recursive algorithm introduced in [27].

The proposed method is summarized in Table II.
The algorithm has a per-iteration complexity of
O(max{(BnR)2.38, BnR(nTnR)2, µ(BnTnR)2}), where
the first two terms account for the computation of Ṽ , and
the last term accounts for the complexity associated with µ
power method-like iterations that are performed within each
outer-loop iteration of the method. Note that the suggested
algorithm yields a monotonically decreasing MSE criterion,
and is guaranteed to converge due to the non-negativity
(and thus lower boundedness) of the MSE. The next section
provides numerical examples that investigate further the
computational efficiency of the method.

Remark (Real-Time Applications): The ideas discussed
herein can be employed in cognitive real-time scenarios,
e.g. for wireless channels in which the channel characteris-
tics are time-varying particularly due to relative motions of
users/scatterers. The time intervals for which the channels can
be assumed to be time-invariant depend on the Doppler spreads
of the channels (see e.g. [28], [29] for details). Note that if the
changes inR andM are small, then the proposed optimization
method can be used (by starting from the previous estimate of
P ) to search for the optimal P under the new channel/noise
condition. Such an approach would typically lead to a quick
convergence of the method to quality solutions. �

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
method with respect to the MSE metric, as well as computation
time, using different scenarios.

A. Simulation Settings

To generate covariance matrices related to a spatially cor-
related scenario, we exploit the exponential model which is
an appropriate model whenever a control over correlation is
required [31]. For the sake of comparison with the existing
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Fig. 2. MSE comparison of different schemes for a 4× 4 MIMO channel where B = 4 and γ = 16. All the curves labeled as cyclic-(.) represent the MSE
values obtained using the proposed algorithm whereas the optimal-total-power curve shows the optimal performance corresponding to the design in [6]. In
order to demonstrate the improvement of MSE values through the iterations, the initial MSE values are also shown using the labels cyclic-(.)-ini.

methods in the literature, we assume that both the channel
matrix R and the noise matrix M follow the Kronecker
model which is a broadly used simplifying assumption in the
MIMO literature [32]. Interestingly, closed-form solutions for
the optimal training design problem with a finite collective
energy (also known as total-power constraint) have been
derived in the literature under certain statistical assumptions;
see e.g. [6]. Among these assumptions, the Kronecker structure
for the channel and noise covariance matrices is one of the
essential conditions to be met in order to make the analysis
tractable. The exploited model can be described as follows.
For a generic covariance matrix C, we let [C]k,l = ρl−k

for k ≤ l, and [C]k,l = [C]∗l,k for l < k, with |ρ| < 1
denoting the correlation coefficient. Note that a larger ρ
represents a stronger correlation among the antennas in the
array [31]. Specifically, we assume R = (RT

T ⊗RR), where
ρrt = 0.9e−jθrt and ρrr = 0.65e−jθrr are used to generate
covariance matrices RT and RR at the transmit side and the
receive side, respectively. Moreover, we let M = (MT

T⊗MR)
where MR = RR, and ρmt = 0.8e−jθmt is the correlation
coefficient used to generate the temporal covariance matrix
MT. The phase arguments (θrt, θrr, θmt) appearing above
were chosen randomly as (0.8349π, 0.4289π, 0.5361π).

We also normalize R and M such that tr{R} = 1 and
tr{M} = κ, and define the training signal-to-noise ratio
(SNR) as SNR , γ/κ, where γ = ‖P ‖2F denotes the total
training energy. Then for a given γ, different values of κ
realize different SNR values. We consider γ = BnT , and set
the stop threshold of the outer-loop iterations in Table II as
ε = 10−5.

B. MSE Metric

We begin by using the proposed cyclic method to design
training sequences with various signal constraints, namely,
total-power (per antenna), unimodularity, quantized-phase
(with q = 64), and low-PAR (viz. PAR ≤ 2). We consider a
4×4 MIMO channel with B = 4, and show the performance of
the suggested algorithm using the MSE as the figure of merit.
As discussed earlier, the quality assessment of the training
signals with respect to the MSE metric is accomplished by
considering a statistical scenario for which a closed-form
optimal solution exists. In this case, we use the closed-form
solution of [6] for total-power constraint as a lower bound for
comparison. The results are shown in Fig. 2. For each specific
signal constraint, we have used the proposed method 30 times
(using different random initializations) and have reported the
average of the obtained MSE values along with the average
of the associated MSE values at initialization. It can be
observed from Fig. 2 that the proposed method performs nearly
optimally in all cases. It is also interesting to note that the
ultimate MSE values for different signal constraints appear to
be very similar although some constraints are more strict than
the others. This phenomenon has also been observed in some
recent publications such as [25], [33] and [34]. The minor
differences between the MSE values achieved by the cyclic
method and that of [6] can be explained by the fact that the
solution from [6] yields the MSE at the global optimum for
total-power energy constraint which is more relaxed than per-
antenna energy constraints taken into account by the cyclic
method.
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Fig. 4. Comparison of computation times required by the proposed cyclic method, the general purpose MATLAB optimization function fmincon, and the
SDP-based approach of [8] for training signal design. The run-time values are averaged over 10 trials with different random initializations.
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Fig. 3. Comparison of the PAR values obtained from the proposed cyclic
method in Fig. 2 and those of [6].

Next, we focus on the PAR constrained example above to
illustrate how one of our main goals, i.e. satisfying the signal
constraints, is achieved by comparing the resulting PAR values
obtained by the proposed algorithm with that of the sequences
suggested in [6]. Fig. 3 shows that the proposed cyclic method
not only provides MSE values close to the optimal, but it also
keeps the PAR values below the specified threshold level, i.e.
PAR ≤ 2. On the other hand, there is no control over the PAR
values associated with the optimal training sequences in [6].

C. Computational Efficiency

Finally, we investigate the computational efficiency of the
proposed method. To this end, the required computation

time of the proposed method is compared with that of the
general purpose MATLAB function fmincon as well as
the semidefinite programming (SDP)-based approach of [8]
in the total-power constraint case. Note that the compu-
tational method of [8] can be used only for identity M ;
hence, we set M to identity in this example to perform the
comparison. In the first experiment, we set the number of
transmitters nT to a fix number 2, and let nR belong to the
set {2, 4, 8, 16, 32, 64, 128}. In the second, we fix nR = 2
and choose nT from {2, 4, 8, 16, 32, 64}. We set B = nT and
compute the average of the required computation time for 10
different trials (with random initializations). The results are
shown in Fig. 4(a) and Fig. 4(b), respectively. Note that the
curves associated with the SDP-based approach of [8] and
MATLAB fmincon are truncated at certain values of nR or
nT due to prohibitive computational burden associated with
these methods. The results leading to Fig. 4 were obtained
using a standard PC with Intel Core i5 CPU 760 @2.80GHz,
and 8GB memory.

It is evident from Fig. 4 that, in both cases, the proposed
method yields significant improvements in the computation
speed compared to its counterparts. However, the case with
nT = 2 and variable nR represents a more practical scenario
for massive MIMO configurations [35]. This is due to the fact
that, in order to keep track of the CSI, the training signals
(designed at the base station) will usually be transmitted by the
user—which typically has a small number of antennas (leading
to a reduced training overhead). Upon receiving the training
signal, the channel estimation occurs at the base station. Then,
thanks to channel reciprocity, both user and the base station
can use the channel estimate while communicating with each
other. In light of the latter remark, it is also interesting to
observe that the design of training sequences appears to be
easier in the case with nT = 2 and variable nR. This is
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presumably due to a smaller number of free variables (i.e.
BnT ) in this case. The computational complexity results
illustrate the applicability of the proposed method to currently
available prototypes of massive MIMO; see e.g. Argos [36]
with 64 antennas at the base station.

IV. CONCLUSIONS

The problem of designing training signals for correlated
MIMO channel estimation was considered, and a cyclic
method based on a novel over-parametrization of the original
MSE minimization problem was introduced. The proposed
approach can be used for arbitrary channel and noise co-
variance matrices, and moreover, for the design of transmit
signals in constrained cases such as with transmitter limitations
or specific communication schemes. It was shown that the
suggested approach can be implemented efficiently from a
computational point of view—a fact that paves the way for
the method to be employed in massive MIMO scenarios.
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